Suppr超能文献

基于 U-Net 的框架来量化数字化 PAS 和 H&E 染色的人类组织中的肾小球硬化。

A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues.

机构信息

University of Barcelona, Barcelona, Spain.

Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland.

出版信息

Comput Med Imaging Graph. 2021 Apr;89:101865. doi: 10.1016/j.compmedimag.2021.101865. Epub 2021 Jan 28.

Abstract

Reliable counting of glomeruli and evaluation of glomerulosclerosis in renal specimens are essential steps to assess morphological changes in kidney and identify individuals requiring treatment. Because microscopic identification of sclerosed glomeruli performed under the microscope is labor intensive, we developed a deep learning (DL) approach to identify and classify glomeruli as normal or sclerosed in digital whole slide images (WSIs). The segmentation and classification of glomeruli was performed by the U-Net model. Subsequently, glomerular classifications were refined based on glomerular histomorphometry. The U-Net model was trained using patches from Periodic Acid-Schiff (PAS) stained WSIs (n=31) from the AIDPATH - a multi-center dataset, and then tested on an independent set of WSIs (n=20) including PAS (n=6), and hematoxylin and eosin (H&E) stained WSIs (n=14) from four other institutions. The training and test WSIs were obtained from formalin fixed and paraffin embedded blocks with of human kidney specimens each presenting various proportions of normal and sclerosed glomeruli. In the PAS stained WSIs, normal and sclerosed glomeruli were respectively classified with the F1-score of 97.5% and 68.8%. In the H&E stained WSIs, the F1-scores of 90.8% and 78.1% were achieved. Regardless the tissue staining, the glomeruli in the test WSIs were classified with the F1-score of 94.5% (n=923, normal) and 76.8% for (n=261, sclerosed). These results demonstrate for the first time that a framework based on the U-Net model trained with glomerular patches from PAS stained WSIs can reliably segment and classify normal and sclerosed glomeruli in PAS and also H&E stained WSIs. Our approach yielded higher accuracy of glomerular classifications than some of the recently published methods. Additionally, our test set of images with ground truth is publicly available.

摘要

可靠地计数肾小球并评估肾组织标本中的肾小球硬化是评估肾脏形态变化和识别需要治疗的个体的重要步骤。由于在显微镜下对硬化肾小球的微观识别非常耗费劳力,因此我们开发了一种深度学习 (DL) 方法,用于在数字全切片图像 (WSI) 中识别和分类正常或硬化的肾小球。肾小球的分割和分类是通过 U-Net 模型进行的。随后,基于肾小球组织形态学对肾小球分类进行了细化。该 U-Net 模型使用来自 AIDPATH 的 PAS 染色 WSI(n=31)的斑块进行训练,AIDPATH 是一个多中心数据集,然后在一个独立的 WSI 集(n=20)上进行测试,其中包括来自四个其他机构的 PAS(n=6)和苏木精和伊红 (H&E) 染色的 WSI(n=14)。训练和测试的 WSI 均来自福尔马林固定和石蜡包埋的组织块,每个块均包含不同比例的正常和硬化肾小球。在 PAS 染色的 WSI 中,正常和硬化的肾小球分别被分类为 97.5%和 68.8%的 F1 分数。在 H&E 染色的 WSI 中,分别获得了 90.8%和 78.1%的 F1 分数。无论组织染色如何,测试 WSI 中的肾小球均以 94.5%的 F1 分数(n=923,正常)和 76.8%的 F1 分数(n=261,硬化)进行分类。这些结果首次证明,基于从 PAS 染色的 WSI 中肾小球斑块训练的 U-Net 模型的框架可以可靠地分割和分类 PAS 和 H&E 染色的 WSI 中的正常和硬化肾小球。与最近发表的一些方法相比,我们的方法对肾小球分类的准确性更高。此外,我们的测试集图像带有真实信息,可公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验