Freie Universität, Berlin, Germany.
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Vet Pathol. 2023 Nov;60(6):865-875. doi: 10.1177/03009858231189205. Epub 2023 Jul 29.
Microscopic evaluation of hematoxylin and eosin-stained slides is still the diagnostic gold standard for a variety of diseases, including neoplasms. Nevertheless, intra- and interrater variability are well documented among pathologists. So far, computer assistance via automated image analysis has shown potential to support pathologists in improving accuracy and reproducibility of quantitative tasks. In this proof of principle study, we describe a machine-learning-based algorithm for the automated diagnosis of 7 of the most common canine skin tumors: trichoblastoma, squamous cell carcinoma, peripheral nerve sheath tumor, melanoma, histiocytoma, mast cell tumor, and plasmacytoma. We selected, digitized, and annotated 350 hematoxylin and eosin-stained slides (50 per tumor type) to create a database divided into training, = 245 whole-slide images (WSIs), validation ( = 35 WSIs), and test sets ( = 70 WSIs). Full annotations included the 7 tumor classes and 6 normal skin structures. The data set was used to train a convolutional neural network (CNN) for the automatic segmentation of tumor and nontumor classes. Subsequently, the detected tumor regions were classified patch-wise into 1 of the 7 tumor classes. A majority of patches-approach led to a tumor classification accuracy of the network on the slide-level of 95% (133/140 WSIs), with a patch-level precision of 85%. The same 140 WSIs were provided to 6 experienced pathologists for diagnosis, who achieved a similar slide-level accuracy of 98% (137/140 correct majority votes). Our results highlight the feasibility of artificial intelligence-based methods as a support tool in diagnostic oncologic pathology with future applications in other species and tumor types.
苏木精和伊红染色切片的显微镜评估仍然是各种疾病(包括肿瘤)的诊断金标准。然而,病理学家之间存在着很好的记录在案的内部和内部变异性。到目前为止,通过自动化图像分析的计算机辅助已经显示出有潜力支持病理学家提高定量任务的准确性和可重复性。在这项原理验证研究中,我们描述了一种基于机器学习的算法,用于自动诊断 7 种最常见的犬皮肤肿瘤:毛母细胞瘤、鳞状细胞癌、周围神经鞘瘤、黑色素瘤、组织细胞瘤、肥大细胞瘤和浆细胞瘤。我们选择、数字化并注释了 350 张苏木精和伊红染色切片(每种肿瘤类型 50 张),创建了一个数据库,分为训练集(n = 245 张全玻片图像(WSI))、验证集(n = 35 WSI)和测试集(n = 70 WSI)。完整的注释包括 7 种肿瘤类型和 6 种正常皮肤结构。该数据集用于训练用于自动分割肿瘤和非肿瘤类别的卷积神经网络(CNN)。随后,检测到的肿瘤区域被分类为 7 种肿瘤类型中的 1 种。多数斑块方法导致网络在玻片水平上的肿瘤分类准确率为 95%(133/140 WSI),斑块水平的精度为 85%。同样的 140 张 WSI 被提供给 6 名经验丰富的病理学家进行诊断,他们在玻片水平上取得了类似的 98%(137/140 票多数正确)的准确率。我们的结果突出了基于人工智能的方法作为诊断肿瘤病理学支持工具的可行性,未来可应用于其他物种和肿瘤类型。