Suppr超能文献

动脉瘤性蛛网膜下腔出血的预测模型:人工智能预测临床转归。

Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence.

机构信息

Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands.

Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.

出版信息

Neurosurgery. 2021 Apr 15;88(5):E427-E434. doi: 10.1093/neuros/nyaa581.

Abstract

BACKGROUND

Predicting outcome after aneurysmal subarachnoid hemorrhage (aSAH) is known to be challenging and complex. Machine learning approaches, of which feedforward artificial neural networks (ffANNs) are the most widely used, could contribute to the patient-specific outcome prediction.

OBJECTIVE

To investigate the prediction capacity of an ffANN for the patient-specific clinical outcome and the occurrence of delayed cerebral ischemia (DCI) and compare those results with the predictions of 2 internationally used scoring systems.

METHODS

A prospective database was used to predict (1) death during hospitalization (ie, mortality) (n = 451), (2) unfavorable modified Rankin Scale (mRS) at 6 mo (n = 413), and (3) the occurrence of DCI (n = 362). Additionally, the predictive capacities of the ffANN were compared to those of Subarachnoid Haemorrhage International Trialists (SAHIT) and VASOGRADE to predict clinical outcome and occurrence of DCI.

RESULTS

The area under the curve (AUC) of the ffANN showed to be 88%, 85%, and 72% for predicting mortality, an unfavorable mRS, and the occurrence of DCI, respectively. Sensitivity/specificity rates of the ffANN for mortality, unfavorable mRS, and the occurrence of DCI were 82%/80%, 94%/80%, and 74%/68%. The ffANN and SAHIT calculator showed similar AUCs for predicting personalized outcome. The presented ffANN and VASOGRADE were found to perform equally with regard to personalized prediction of occurrence of DCI.

CONCLUSION

The presented ffANN showed equal performance when compared with VASOGRADE and SAHIT scoring systems while using less individual cases. The web interface launched simultaneously with the publication of this manuscript allows for usage of the ffANN-based prediction tool for individual data (https://nutshell-tool.com/).

摘要

背景

预测动脉瘤性蛛网膜下腔出血(aSAH)后的结果已知具有挑战性且复杂。机器学习方法,其中前馈人工神经网络(ffANN)是最广泛使用的方法,可以有助于进行针对患者的预后预测。

目的

研究 ffANN 对特定患者临床结局和迟发性脑缺血(DCI)发生的预测能力,并将这些结果与 2 种国际上使用的评分系统的预测结果进行比较。

方法

前瞻性数据库用于预测(1)住院期间死亡(即死亡率)(n=451),(2)6 个月时不良改良 Rankin 量表(mRS)评分(n=413)和(3)DCI 的发生(n=362)。此外,还比较了 ffANN 的预测能力与蛛网膜下腔出血国际试验者(SAHIT)和 VASOGRADE 预测临床结局和 DCI 发生的能力。

结果

ffANN 预测死亡率、不良 mRS 和 DCI 发生的曲线下面积(AUC)分别为 88%、85%和 72%。ffANN 预测死亡率、不良 mRS 和 DCI 发生的敏感性/特异性率分别为 82%/80%、94%/80%和 74%/68%。ffANN 和 SAHIT 计算器在预测个体化结局方面具有相似的 AUC。所提出的 ffANN 与 VASOGRADE 在预测 DCI 的个体化发生方面表现相当。

结论

与 VASOGRADE 和 SAHIT 评分系统相比,所提出的 ffANN 表现相当,而使用的个体病例较少。本研究同时发布了一个网络界面(https://nutshell-tool.com/),允许使用基于 ffANN 的预测工具对个体数据进行预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验