Suppr超能文献

急性肺栓塞的风险分层:最新算法。

Risk Stratification in Acute Pulmonary Embolism: The Latest Algorithms.

机构信息

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania.

出版信息

Semin Respir Crit Care Med. 2021 Apr;42(2):183-198. doi: 10.1055/s-0041-1722898. Epub 2021 Feb 6.

Abstract

Pulmonary embolism (PE) is a common clinical entity, which most clinicians will encounter. Appropriate risk stratification of patients is key to identify those who may benefit from reperfusion therapy. The first step in risk assessment should be the identification of hemodynamic instability and, if present, urgent patient consideration for systemic thrombolytics. In the absence of shock, there is a plethora of imaging studies, biochemical markers, and clinical scores that can be used to further assess the patients' short-term mortality risk. Integrated prediction models incorporate more information toward an individualized and precise mortality prediction. Additionally, bleeding risk scores should be utilized prior to initiation of anticoagulation and/or reperfusion therapy administration. Here, we review the latest algorithms for a comprehensive risk stratification of the patient with acute PE.

摘要

肺栓塞(PE)是一种常见的临床病症,大多数临床医生都会遇到。对患者进行适当的风险分层是确定哪些患者可能受益于再灌注治疗的关键。风险评估的第一步应该是确定血流动力学不稳定,如果存在,应紧急考虑对患者进行全身溶栓治疗。如果没有休克,有大量的影像学研究、生化标志物和临床评分可用于进一步评估患者的短期死亡率风险。综合预测模型纳入了更多信息,以实现个体化和精确的死亡率预测。此外,在开始抗凝和/或再灌注治疗之前,应使用出血风险评分。在这里,我们回顾了最新的算法,用于对急性 PE 患者进行全面的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验