Suppr超能文献

任务相关电生理网络的动力学:基准研究。

Dynamics of task-related electrophysiological networks: a benchmarking study.

机构信息

Univ Rennes, LTSI - U1099, F-35000 Rennes, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon.

Univ Rennes, LTSI - U1099, F-35000 Rennes, France.

出版信息

Neuroimage. 2021 May 1;231:117829. doi: 10.1016/j.neuroimage.2021.117829. Epub 2021 Feb 5.

Abstract

Motor, sensory and cognitive functions rely on dynamic reshaping of functional brain networks. Tracking these rapid changes is crucial to understand information processing in the brain, but challenging due to the great variety of dimensionality reduction methods used at the network-level and the limited evaluation studies. Using Magnetoencephalography (MEG) combined with Source Separation (SS) methods, we present an integrated framework to track fast dynamics of electrophysiological brain networks. We evaluate nine SS methods applied to three independent MEG databases (N=95) during motor and memory tasks. We report differences between these methods at the group and subject level. We seek to help researchers in choosing objectively the appropriate SS method when tracking fast reconfiguration of functional brain networks, due to its enormous benefits in cognitive and clinical neuroscience.

摘要

运动、感觉和认知功能依赖于功能性大脑网络的动态重塑。跟踪这些快速变化对于理解大脑中的信息处理至关重要,但由于在网络层面上使用了各种降维方法,以及有限的评估研究,这具有挑战性。我们使用脑磁图(MEG)结合源分离(SS)方法,提出了一个集成框架来跟踪电生理大脑网络的快速动态。我们评估了九种 SS 方法在三个独立的 MEG 数据库(N=95)中在运动和记忆任务期间的应用。我们报告了这些方法在组和个体水平上的差异。由于在认知和临床神经科学中具有巨大的优势,我们旨在帮助研究人员在跟踪功能性大脑网络的快速重新配置时客观地选择合适的 SS 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验