Univ Rennes, LTSI - U1099, Rennes F-35000, France.
Aix Marseille University, CNRS, LNSC, Marseille, France.
Neuroimage. 2021 Feb 15;227:117674. doi: 10.1016/j.neuroimage.2020.117674. Epub 2020 Dec 29.
The human brain is a dynamic modular network that can be decomposed into a set of modules, and its activity changes continually over time. At rest, several brain networks, known as Resting-State Networks (RSNs), emerge and cross-communicate even at sub-second temporal scale. Here, we seek to decipher the fast reshaping in spontaneous brain modularity and its relationships with RSNs. We use Electro/Magneto-Encephalography (EEG/MEG) to track the dynamics of modular brain networks, in three independent datasets (N = 568) of healthy subjects at rest. We show the presence of strikingly consistent RSNs, and a splitting phenomenon of some of these networks, especially the default mode network, visual, temporal and dorsal attentional networks. We also demonstrate that between-subjects variability in mental imagery is associated with the temporal characteristics of specific modules, particularly the visual network. Taken together, our findings show that large-scale electrophysiological networks have modularity-dependent dynamic fingerprints at rest.
人脑是一个动态的模块化网络,可以分解为一组模块,其活动随时间不断变化。在休息时,会出现几个被称为静息态网络(RSN)的脑网络,即使在亚秒级的时间尺度上,它们也会进行交叉通信。在这里,我们试图破译自发脑模块化的快速重塑及其与 RSN 的关系。我们使用脑电图/脑磁图(EEG/MEG)在三个独立的健康受试者静息数据集(N=568)中跟踪模块化脑网络的动态。我们展示了惊人一致的 RSN 的存在,以及其中一些网络(尤其是默认模式网络、视觉网络、时间网络和背侧注意网络)的分裂现象。我们还表明,在想象中的主体间变异性与特定模块的时间特征有关,特别是视觉网络。总之,我们的研究结果表明,大型的电生理网络在休息时具有依赖于模块性的动态指纹。