Suppr超能文献

利用对语音的机器学习分析来对患有情绪障碍的青少年的父母所表达的情绪水平进行分类。

Using machine learning analyses of speech to classify levels of expressed emotion in parents of youth with mood disorders.

作者信息

Weintraub Marc J, Posta Filippo, Arevian Armen C, Miklowitz David J

机构信息

UCLA Semel Institute, Los Angeles, CA, USA.

Estrella Mountain Community College, Avondale, AZ, USA.

出版信息

J Psychiatr Res. 2021 Apr;136:39-46. doi: 10.1016/j.jpsychires.2021.01.019. Epub 2021 Jan 28.

Abstract

Expressed emotion (EE), a measure of attitudes among caregivers towards a patient with a psychiatric disorder, is a robust predictor of relapse across mood and psychotic disorders. Because the measurement of EE is time-intensive and costly, its use in clinical settings has been limited. In an effort to automate EE classification, we evaluated whether machine learning (ML) applied to lexical features of speech samples can accurately categorize parents as high or low in EE and in its subtypes (criticism, overinvolvement, and warmth). The sample was 123 parents of youth who had active mood symptoms and a family history of bipolar disorder. Using ML algorithms, we achieved 75.2-81.8% accuracy (sensitivities of ~0.7 and specificities of ~0.8) in classifying parents as high or low in EE and EE subtypes. Additionally, machine-derived EE classifications and observer-rated EE classifications had simiar relationships with youth mood symptoms, parental distress, and family conflict. Of note, criticism related to greater manic severity, parental distress, and family conflict. Study findings indicate that EE classification can be automated through lexical analysis and suggest potential for facilitating larger-scale applications in clinical settings. The results also provide initial indications of the digital phenotypes that underlie EE and its subtypes.

摘要

表达性情绪(EE)是衡量照顾者对患有精神疾病患者态度的一种指标,是情绪和精神障碍复发的有力预测因素。由于EE的测量耗时且成本高,其在临床环境中的应用受到限制。为了实现EE分类的自动化,我们评估了应用于语音样本词汇特征的机器学习(ML)能否准确地将父母分为EE及其亚型(批评、过度卷入和温暖)程度高或低的类别。样本包括123名患有活跃情绪症状且有双相情感障碍家族史的青少年的父母。使用ML算法,我们在将父母分为EE及其亚型程度高或低的类别时,准确率达到了75.2%-81.8%(敏感度约为0.7,特异度约为0.8)。此外,机器得出的EE分类与观察者评定的EE分类与青少年情绪症状、父母痛苦和家庭冲突之间的关系相似。值得注意的是,批评与更高的躁狂严重程度、父母痛苦和家庭冲突有关。研究结果表明,EE分类可以通过词汇分析实现自动化,并表明在临床环境中促进大规模应用的潜力。研究结果还初步显示了构成EE及其亚型基础的数字表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc4/8009823/464cb0cf6cba/nihms-1667610-f0001.jpg

相似文献

5
All in the Family: How Parental Criticism Impacts Depressive Symptoms in Youth.一家人:父母的批评如何影响青少年的抑郁症状。
Res Child Adolesc Psychopathol. 2022 Jan;50(1):27-35. doi: 10.1007/s10802-021-00809-w. Epub 2021 Mar 20.

本文引用的文献

3
Machine learning algorithm validation with a limited sample size.机器学习算法在有限样本量下的验证。
PLoS One. 2019 Nov 7;14(11):e0224365. doi: 10.1371/journal.pone.0224365. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验