Suppr超能文献

利用对语音的机器学习分析来对患有情绪障碍的青少年的父母所表达的情绪水平进行分类。

Using machine learning analyses of speech to classify levels of expressed emotion in parents of youth with mood disorders.

作者信息

Weintraub Marc J, Posta Filippo, Arevian Armen C, Miklowitz David J

机构信息

UCLA Semel Institute, Los Angeles, CA, USA.

Estrella Mountain Community College, Avondale, AZ, USA.

出版信息

J Psychiatr Res. 2021 Apr;136:39-46. doi: 10.1016/j.jpsychires.2021.01.019. Epub 2021 Jan 28.

Abstract

Expressed emotion (EE), a measure of attitudes among caregivers towards a patient with a psychiatric disorder, is a robust predictor of relapse across mood and psychotic disorders. Because the measurement of EE is time-intensive and costly, its use in clinical settings has been limited. In an effort to automate EE classification, we evaluated whether machine learning (ML) applied to lexical features of speech samples can accurately categorize parents as high or low in EE and in its subtypes (criticism, overinvolvement, and warmth). The sample was 123 parents of youth who had active mood symptoms and a family history of bipolar disorder. Using ML algorithms, we achieved 75.2-81.8% accuracy (sensitivities of ~0.7 and specificities of ~0.8) in classifying parents as high or low in EE and EE subtypes. Additionally, machine-derived EE classifications and observer-rated EE classifications had simiar relationships with youth mood symptoms, parental distress, and family conflict. Of note, criticism related to greater manic severity, parental distress, and family conflict. Study findings indicate that EE classification can be automated through lexical analysis and suggest potential for facilitating larger-scale applications in clinical settings. The results also provide initial indications of the digital phenotypes that underlie EE and its subtypes.

摘要

表达性情绪(EE)是衡量照顾者对患有精神疾病患者态度的一种指标,是情绪和精神障碍复发的有力预测因素。由于EE的测量耗时且成本高,其在临床环境中的应用受到限制。为了实现EE分类的自动化,我们评估了应用于语音样本词汇特征的机器学习(ML)能否准确地将父母分为EE及其亚型(批评、过度卷入和温暖)程度高或低的类别。样本包括123名患有活跃情绪症状且有双相情感障碍家族史的青少年的父母。使用ML算法,我们在将父母分为EE及其亚型程度高或低的类别时,准确率达到了75.2%-81.8%(敏感度约为0.7,特异度约为0.8)。此外,机器得出的EE分类与观察者评定的EE分类与青少年情绪症状、父母痛苦和家庭冲突之间的关系相似。值得注意的是,批评与更高的躁狂严重程度、父母痛苦和家庭冲突有关。研究结果表明,EE分类可以通过词汇分析实现自动化,并表明在临床环境中促进大规模应用的潜力。研究结果还初步显示了构成EE及其亚型基础的数字表型。

相似文献

1
Using machine learning analyses of speech to classify levels of expressed emotion in parents of youth with mood disorders.
J Psychiatr Res. 2021 Apr;136:39-46. doi: 10.1016/j.jpsychires.2021.01.019. Epub 2021 Jan 28.
3
Machine learning approach to measurement of criticism: The core dimension of expressed emotion.
J Fam Psychol. 2021 Oct;35(7):1007-1015. doi: 10.1037/fam0000906. Epub 2021 Aug 19.
4
Expressed emotion moderates the effects of family-focused treatment for bipolar adolescents.
J Am Acad Child Adolesc Psychiatry. 2009 Jun;48(6):643-651. doi: 10.1097/CHI.0b013e3181a0ab9d.
5
All in the Family: How Parental Criticism Impacts Depressive Symptoms in Youth.
Res Child Adolesc Psychopathol. 2022 Jan;50(1):27-35. doi: 10.1007/s10802-021-00809-w. Epub 2021 Mar 20.
6
Correlates of high expressed emotion attitudes among parents of bipolar adolescents.
J Clin Psychol. 2008 Apr;64(4):438-49. doi: 10.1002/jclp.20463.
8
Differential correlates of criticism versus emotional overinvolvement towards patients with schizophrenia living in halfway houses or with their families.
Soc Psychiatry Psychiatr Epidemiol. 2024 Oct;59(10):1761-1773. doi: 10.1007/s00127-023-02609-7. Epub 2024 Jan 31.
9
Expressed emotion as a predictor of outcome among bipolar patients undergoing family therapy.
J Affect Disord. 2004 Nov 1;82(3):343-52. doi: 10.1016/j.jad.2004.02.004.

引用本文的文献

1
Expressed Emotions in Patients with Mild to Moderate Ulcerative Colitis: A Descriptive Study.
Ann Neurosci. 2025 Apr 30:09727531251330071. doi: 10.1177/09727531251330071.
2
Natural language processing for mental health interventions: a systematic review and research framework.
Transl Psychiatry. 2023 Oct 6;13(1):309. doi: 10.1038/s41398-023-02592-2.
3
4
Digital phenotype of mood disorders: A conceptual and critical review.
Front Psychiatry. 2022 Jul 26;13:895860. doi: 10.3389/fpsyt.2022.895860. eCollection 2022.
5
Social and environmental variables as predictors of mania: a review of longitudinal research findings.
Discov Ment Health. 2022;2(1):7. doi: 10.1007/s44192-022-00010-5. Epub 2022 Mar 14.

本文引用的文献

1
Clinical state tracking in serious mental illness through computational analysis of speech.
PLoS One. 2020 Jan 15;15(1):e0225695. doi: 10.1371/journal.pone.0225695. eCollection 2020.
3
Machine learning algorithm validation with a limited sample size.
PLoS One. 2019 Nov 7;14(11):e0224365. doi: 10.1371/journal.pone.0224365. eCollection 2019.
5
Is perceived criticism an independent construct? Evidence for divergent validity across two samples.
J Fam Psychol. 2019 Mar;33(2):133-142. doi: 10.1037/fam0000452. Epub 2018 Aug 16.
6
Digital Phenotyping: Technology for a New Science of Behavior.
JAMA. 2017 Oct 3;318(13):1215-1216. doi: 10.1001/jama.2017.11295.
7
Family-Focused Therapy for Bipolar Disorder: Reflections on 30 Years of Research.
Fam Process. 2016 Sep;55(3):483-99. doi: 10.1111/famp.12237. Epub 2016 Jul 29.
9
10
Relatives' emotional involvement moderates the effects of family therapy for bipolar disorder.
J Consult Clin Psychol. 2015 Feb;83(1):81-91. doi: 10.1037/a0037713. Epub 2014 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验