Schwerin Stefan, Kopp Claudia, Pircher Elisabeth, Schneider Gerhard, Kreuzer Matthias, Haseneder Rainer, Kratzer Stephan
Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine, Munich, Germany.
Front Cell Neurosci. 2021 Jan 21;14:606687. doi: 10.3389/fncel.2020.606687. eCollection 2020.
As thalamocortical relay neurons are ascribed a crucial role in signal propagation and information processing, they have attracted considerable attention as potential targets for anesthetic modulation. In this study, we analyzed the effects of different concentrations of sevoflurane on the excitability of thalamocortical relay neurons and hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels, which play a decisive role in regulating membrane properties and rhythmic oscillatory activity. The effects of sevoflurane on single-cell excitability and native HCN channels were investigated in acutely prepared brain slices from adult wild-type mice with the whole-cell patch-clamp technique, using voltage-clamp and current-clamp protocols. Sevoflurane dose-dependently depressed membrane biophysics and HCN-mediated parameters of neuronal excitability. Respective half-maximal inhibitory and effective concentrations ranged between 0.30 (95% CI, 0.18-0.50) mM and 0.88 (95% CI, 0.40-2.20) mM. We witnessed a pronounced reduction of HCN dependent I current amplitude starting at a concentration of 0.45 mM [relative change at -133 mV; 0.45 mM sevoflurane: 0.85 (interquartile range, 0.79-0.92), = 12, = 0.011; 1.47 mM sevoflurane: 0.37 (interquartile range, 0.34-0.62), = 5, < 0.001] with a half-maximal inhibitory concentration of 0.88 (95% CI, 0.40-2.20) mM. In contrast, effects on voltage-dependent channel gating were modest with significant changes only occurring at 1.47 mM [absolute change of half-maximal activation potential; 1.47 mM: -7.2 (interquartile range, -10.3 to -5.8) mV, = 5, = 0.020]. In this study, we demonstrate that sevoflurane inhibits the excitability of thalamocortical relay neurons in a concentration-dependent manner within a clinically relevant range. Especially concerning its effects on native HCN channel function, our findings indicate substance-specific differences in comparison to other anesthetic agents. Considering the importance of HCN channels, the observed effects might mechanistically contribute to the hypnotic properties of sevoflurane.
由于丘脑皮质中继神经元在信号传播和信息处理中发挥着关键作用,它们作为麻醉调节的潜在靶点已引起了相当大的关注。在本研究中,我们分析了不同浓度的七氟醚对丘脑皮质中继神经元兴奋性以及超极化激活的环核苷酸门控(HCN)通道的影响,HCN通道在调节膜特性和节律性振荡活动中起决定性作用。采用全细胞膜片钳技术,运用电压钳和电流钳记录模式,在成年野生型小鼠急性制备的脑片中研究了七氟醚对单细胞兴奋性和天然HCN通道的影响。七氟醚剂量依赖性地抑制膜生物物理学特性和HCN介导的神经元兴奋性参数。各自的半数最大抑制浓度和有效浓度范围在0.30(95%可信区间,0.18 - 0.50)mM至0.88(95%可信区间,0.40 - 2.20)mM之间。我们观察到,当浓度达到0.45 mM时,HCN依赖性I电流幅度显著降低[-133 mV时的相对变化;0.45 mM七氟醚:0.85(四分位间距,0.79 - 0.92),n = 12,P = 0.011;1.47 mM七氟醚:0.37(四分位间距,0.34 - 0.62),n = 5,P < 0.001],半数最大抑制浓度为0.88(95%可信区间,0.40 - 2.20)mM。相比之下,七氟醚对电压依赖性通道门控的影响较小,仅在1.47 mM时出现显著变化[半数最大激活电位的绝对变化;1.47 mM:-7.2(四分位间距,-10.3至-5.8)mV,n = 5,P = 0.020]。在本研究中,我们证明七氟醚在临床相关浓度范围内以浓度依赖性方式抑制丘脑皮质中继神经元的兴奋性。特别是考虑到其对天然HCN通道功能的影响,我们的研究结果表明与其他麻醉剂相比存在物质特异性差异。鉴于HCN通道的重要性,观察到的这些效应可能在机制上有助于七氟醚的催眠特性。