Suppr超能文献

水库的甲烷和二氧化碳排放:控制与放大

Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling.

作者信息

Beaulieu Jake J, Waldo Sarah, Balz David A, Barnett Will, Hall Alexander, Platz Michelle C, White Karen M

机构信息

United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.

Pegasus Technical Services, Cincinnati, OH, USA.

出版信息

J Geophys Res Biogeosci. 2020 Dec 4;125(12). doi: 10.1029/2019JG005474.

Abstract

Estimating carbon dioxide (CO) and methane (CH) emission rates from reservoirs is important for regional and national greenhouse gas inventories. A lack of methodologically consistent data sets for many parts of the world, including agriculturally intensive areas of the United States, poses a major challenge to the development of models for predicting emission rates. In this study, we used a systematic approach to measure CO and CH diffusive and ebullitive emission rates from 32 reservoirs distributed across an agricultural to forested land use gradient in the United States. We found that all reservoirs were a source of CH to the atmosphere, with ebullition being the dominant emission pathway in 75% of the systems. Ebullition was a negligible emission pathway for CO, and 65% of sampled reservoirs were a net CO sink. Boosted regression trees (BRTs), a type of machine learning algorithm, identified reservoir morphology and watershed agricultural land use as important predictors of emission rates. We used the BRT to predict CH emission rates for reservoirs in the U.S. state of Ohio and estimate they are the fourth largest anthropogenic CH source in the state. Our work demonstrates that CH emission rates for reservoirs in our study region can be predicted from information in readily available national geodatabases. Expanded sampling campaigns could generate the data needed to train models for upscaling in other U.S. regions or nationally.

摘要

估算水库中二氧化碳(CO)和甲烷(CH)的排放速率对于区域和国家温室气体清单而言至关重要。包括美国农业密集区在内的世界许多地区,缺乏方法上一致的数据集,这对预测排放速率的模型开发构成了重大挑战。在本研究中,我们采用系统方法来测量美国32个水库的CO和CH扩散及冒泡排放速率,这些水库分布在从农业用地到林地的土地利用梯度范围内。我们发现所有水库都是大气中CH的来源,在75%的系统中,冒泡是主要排放途径。冒泡对于CO来说是可忽略不计的排放途径,65%的采样水库是CO的净汇。提升回归树(BRT)是一种机器学习算法,它确定水库形态和流域农业土地利用是排放速率的重要预测因子。我们使用BRT来预测美国俄亥俄州水库的CH排放速率,并估计它们是该州第四大人为CH排放源。我们的工作表明,可以根据现有的国家地理数据库中的信息来预测我们研究区域内水库的CH排放速率。扩大采样活动可以生成在美国其他地区或全国范围内进行模型扩展训练所需的数据。

相似文献

1
Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling.
J Geophys Res Biogeosci. 2020 Dec 4;125(12). doi: 10.1029/2019JG005474.
2
High methane emissions from a midlatitude reservoir draining an agricultural watershed.
Environ Sci Technol. 2014 Oct 7;48(19):11100-8. doi: 10.1021/es501871g. Epub 2014 Sep 25.
3
Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.
Braz J Biol. 2015 May;75(2):331-8. doi: 10.1590/1519-6984.12313.
4
Global methane and nitrous oxide emissions from inland waters and estuaries.
Glob Chang Biol. 2022 Aug;28(15):4713-4725. doi: 10.1111/gcb.16233. Epub 2022 May 27.
5
Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.
Environ Manage. 2017 Oct;60(4):615-629. doi: 10.1007/s00267-017-0909-1. Epub 2017 Jul 21.
6
Summer CH ebullition strongly determines year-round greenhouse gas emissions from agricultural ditches despite frequent dredging.
J Environ Manage. 2025 Jan;373:123813. doi: 10.1016/j.jenvman.2024.123813. Epub 2024 Dec 24.
7
Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River.
Water Res. 2020 Nov 1;186:116319. doi: 10.1016/j.watres.2020.116319. Epub 2020 Aug 19.
9
Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions.
Water Res. 2021 Feb 1;189:116654. doi: 10.1016/j.watres.2020.116654. Epub 2020 Nov 17.
10
Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.
Glob Chang Biol. 2014 Nov;20(11):3397-407. doi: 10.1111/gcb.12575. Epub 2014 Apr 30.

引用本文的文献

本文引用的文献

2
Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis.
Bioscience. 2016 Nov 1;66(11):949-964. doi: 10.1093/biosci/biw117.
3
Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change.
Limnol Oceanogr Lett. 2019 Mar 26;3(3):64-75. doi: 10.1002/lol2.10073.
4
iAMES: An inexpensive, Automated Methane Ebullition Sensor.
Environ Sci Technol. 2019 Jun 4;53(11):6420-6426. doi: 10.1021/acs.est.9b01881. Epub 2019 May 23.
5
Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir.
Ecosystems. 2018;21(4):657-674. doi: 10.1007/s10021-017-0176-2. Epub 2017 Sep 5.
6
Eutrophication will increase methane emissions from lakes and impoundments during the 21st century.
Nat Commun. 2019 Mar 26;10(1):1375. doi: 10.1038/s41467-019-09100-5.
7
Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?
Ecosystems. 2018;21(5):1058-1071. doi: 10.1007/s10021-017-0198-9.
8
Redistribution of methane emission hot spots under drawdown conditions.
Sci Total Environ. 2019 Jan 1;646:958-971. doi: 10.1016/j.scitotenv.2018.07.338. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验