Watanabe Shun, Hakamatani Ryohei, Yaegashi Keita, Yamashita Yu, Nozawa Han, Sasaki Mari, Kumagai Shohei, Okamoto Toshihiro, Tang Cindy G, Chua Lay-Lay, Ho Peter K H, Takeya Jun
Material Innovation Research Center (MIRC) and Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan.
AIST-UTokyo Advanced Operando-Mesurement Technology Open Innovation Laboratory (OPERANDO-OIL) AIST 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan.
Adv Sci (Weinh). 2020 Dec 18;8(3):2002065. doi: 10.1002/advs.202002065. eCollection 2021 Feb.
A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 10 cm at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.
即使是在范德华键合的有机晶体中建立的高度周期性静电势,对于实现相干能带电子系统也是必不可少的。虽然杂质掺杂是一种有效的化学操作,可以精确调节电子系统的能量,但在分子晶体中它总是面临一个不可避免的困难,因为引入相对高密度的掺杂剂不可避免地会破坏高度有序的分子框架。与之形成鲜明对比的是,提出了一种通用策略,可在有机半导体晶体表面创建相干二维电子载流子,同时完美保留其精确的分子结构。通过在分子平整的晶体表面上进行简单的一次性溶液过程形成氧化还原活性分子掺杂剂的组装体,可实现高效化学掺杂,并在室温下产生相对较高的载流子密度10 cm 。结构和磁输运分析全面揭示,可获得与体晶体中类似的优异载流子输运和压阻效应。