挖掘纳米酶的生物活性以重塑微环境,保护软骨细胞并延缓骨关节炎。

Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis.

作者信息

Hou Weiduo, Ye Chenyi, Chen Mo, Gao Wei, Xie Xue, Wu Jianrong, Zhang Kai, Zhang Wei, Zheng Yuanyi, Cai Xiaojun

机构信息

Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.

Research Institute of Orthopaedics, Zhejiang University, 310009, Hangzhou, China.

出版信息

Bioact Mater. 2021 Jan 29;6(8):2439-2451. doi: 10.1016/j.bioactmat.2021.01.016. eCollection 2021 Aug.

Abstract

Osteoarthritis (OA) is the main cause of disability in the elderly. Effective intervention in the early and middle stage of osteoarthritis can greatly prevent or slow down the development of the disease, and reduce the probability of joint replacement. However, there is to date no effective intervention for early and middle-stage OA. OA microenvironment mainly destroys the balance of oxidative stress, extracellular matrix synthesis and degradation of chondrocytes under the joint action of biological and mechanical factors. Herein, hollow Prussian blue nanozymes (HPBzymes) were designed via a modified hydrothermal template-free method. The aim of this study was to investigate the effects of HPBzymes on chondrocytes and the progression of OA. The intrinsic bioactivities of HPBzymes were excavated and , remodeling microenvironment for significantly protecting chondrocytes and delaying the progression of traumatic OA by inhibiting reactive oxygen species (ROS) and Rac1/nuclear factor kappa-B (NF-κB) signaling in a rat model. HPBzyme significantly diminished interleukin (IL)-1β-stimulated inflammation, extracellular matrix degradation, and apoptosis of human chondrocytes. HPBzyme attenuated the expression of Rac1 and the ROS levels and prevented the release and nuclear translocation of NF-κB. Deeply digging the intrinsic bioactivities of nanozyme with single component to remodel microenvironment is an effective strategy for ROS-associated chronic diseases. This study reveals that excavating the bioactivities of nanomedicine deserves attention for diagnosis and treatment of severe diseases.

摘要

骨关节炎(OA)是老年人残疾的主要原因。在骨关节炎的早期和中期进行有效干预可以极大地预防或减缓疾病的发展,并降低关节置换的可能性。然而,迄今为止,尚无针对早期和中期OA的有效干预措施。OA微环境主要在生物和机械因素的共同作用下破坏氧化应激平衡、细胞外基质合成以及软骨细胞的降解。在此,通过改进的无模板水热法设计了中空普鲁士蓝纳米酶(HPBzymes)。本研究的目的是探讨HPBzymes对软骨细胞和OA进展的影响。挖掘了HPBzymes的内在生物活性,并通过抑制大鼠模型中的活性氧(ROS)和Rac1/核因子κB(NF-κB)信号传导,重塑微环境以显著保护软骨细胞并延缓创伤性OA的进展。HPBzyme显著减轻白细胞介素(IL)-1β刺激的炎症、细胞外基质降解以及人软骨细胞的凋亡。HPBzyme减弱了Rac1的表达和ROS水平,并阻止了NF-κB的释放和核转位。深入挖掘单一组分纳米酶的内在生物活性以重塑微环境是治疗与ROS相关的慢性疾病的有效策略。本研究表明,挖掘纳米药物的生物活性在严重疾病的诊断和治疗中值得关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a26a/7848724/054796b8207a/fx1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索