Yang Junyao, Chen Jian, Liu Yixiao, Zhao Xinghe, Chen Zheyi, Zheng Haodong, Chen Fangyi, Yan Hongyu, Cai Xiaojun, Xu Jing
Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200092, PR China.
Mater Today Bio. 2025 Aug 11;34:102187. doi: 10.1016/j.mtbio.2025.102187. eCollection 2025 Oct.
Tendinopathy, a prevalent musculoskeletal disorder characterized by chronic pain and functional decline, remains a therapeutic challenge due to the limited efficacy of conventional treatments in addressing oxidative stress and persistent inflammation. Here, we present Prussian blue nanozymes (PBzymes) as a catalytic nanomedicine engineered to mimic multi-enzyme activities, offering a potent strategy for tendon microenvironment modulation and repair. Synthesized via a hydrothermal template-free approach, PBzymes exhibit robust reactive oxygen species (ROS)-scavenging capabilities through intrinsic superoxide dismutase, catalase, and peroxidase-like activities, effectively neutralizing •OH, HO, and •OOH radicals. In vitro studies demonstrate PBzymes' ability to mitigate tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in tenocytes and restore cell viability via ROS clearance. In a collagenase-induced rat tendinopathy model, localized PBzyme administration suppressed inflammatory tissue damage, inhibited aberrant differentiation of tendon progenitor cells and promoted collagen fiber realignment achieving a significant increase in biomechanical strength of tissue samples compared to untreated controls. Mechanistically, PBzymes attenuated MAPK signaling activation in M1 macrophages, downregulating pro-inflammatory cytokines (Interleukin-1β and Tumor Necrosis Factor-α) production while enhancing M2 reparative macrophage polarization. Histological and gait analyses of treated rat further confirmed functional recovery, with treated tendons exhibiting near-native collagen architecture and restored locomotor parameters. Comprehensive biosafety evaluations revealed no systemic toxicity that would underscore PBzymes' clinical potential. This work pioneers nanozyme-mediated tendon regeneration, bridging catalytic nanotechnology and immunomodulation to address unmet needs in musculoskeletal therapeutics.
肌腱病是一种常见的肌肉骨骼疾病,其特征为慢性疼痛和功能衰退。由于传统治疗方法在应对氧化应激和持续性炎症方面疗效有限,它仍然是一个治疗难题。在此,我们展示了普鲁士蓝纳米酶(PBzymes)作为一种经过工程设计以模拟多种酶活性的催化纳米药物,为肌腱微环境调节和修复提供了一种有效的策略。通过无模板水热法合成的PBzymes,通过内在的超氧化物歧化酶、过氧化氢酶和过氧化物酶样活性,展现出强大的活性氧(ROS)清除能力,有效中和•OH、HO和•OOH自由基。体外研究表明,PBzymes能够减轻叔丁基过氧化氢(t-BHP)诱导的肌腱细胞氧化损伤,并通过清除ROS恢复细胞活力。在胶原酶诱导的大鼠肌腱病模型中,局部施用PBzymes可抑制炎症组织损伤,抑制肌腱祖细胞的异常分化,并促进胶原纤维重新排列,与未治疗的对照组相比,组织样本的生物力学强度显著增加。从机制上讲,PBzymes减弱了M1巨噬细胞中MAPK信号的激活,下调促炎细胞因子(白细胞介素-1β和肿瘤坏死因子-α)的产生,同时增强M2修复性巨噬细胞极化。对治疗大鼠的组织学和步态分析进一步证实了功能恢复,治疗后的肌腱呈现出接近天然的胶原结构,运动参数也得以恢复。全面的生物安全性评估显示没有全身毒性,这突出了PBzymes的临床潜力。这项工作开创了纳米酶介导的肌腱再生,将催化纳米技术与免疫调节相结合,以满足肌肉骨骼治疗中未被满足的需求。