Suppr超能文献

基于对鲜为人知的古巴哺乳动物的了解,确定从遥感生境信息进行 IUCN 红色名录评估的可能性和陷阱。

Identifying the possibilities and pitfalls of conducting IUCN Red List assessments from remotely sensed habitat information based on insights from poorly known Cuban mammals.

机构信息

Centre for Ecology & Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K.

Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K.

出版信息

Conserv Biol. 2021 Oct;35(5):1598-1614. doi: 10.1111/cobi.13715. Epub 2021 Mar 8.

Abstract

The International Union for Conservation of Nature's Red List of Threatened Species (RLS) is the key global tool for objective, repeatable assessment of species' extinction risk status, and plays an essential role in tracking biodiversity loss and guiding conservation action. Satellite remote sensing (SRS) data sets on global ecosystem distributions and functioning show exciting potential for informing range-based RLS assessment, but their incorporation has been restricted by low temporal resolution and coverage of data sets, lack of incorporation of degradation-driven habitat loss, and noninclusion of assumptions related to identification of changing habitat distributions for taxa with varying habitat dependency and ecologies. For poorly known mangrove-associated Cuban hutias (Mesocapromys spp.), we tested the impact of possible assumptions regarding these issues on range-based RLS assessment outcomes. Specifically, we used annual (1985-2018) Landsat data and land-cover classification and habitat degradation analyses across different internal time series slices to simulate range-based RLS assessments for our case study taxa to explore potential assessment uncertainty arising from temporal SRS data set coverage, incorporating proxies of (change in) habitat quality, and assumptions on spatial scaling of habitat extent for RLS parameter generation. We found extensive variation in simulated species-specific range-based RLS assessments, and this variation was mostly associated with the time series over which parameters were estimated. However, results of some species-specific assessments differed by up to 3 categories (near threatened to critically endangered) within the same time series, due to the effects of incorporating habitat quality and the spatial scaling used in RLS parameter estimation. Our results showed that a one-size-fits-all approach to incorporating SRS information in RLS assessment is inappropriate, and we urge caution in conducting range-based assessments with SRS for species for which habitat dependence on specific ecosystem types is incompletely understood. We propose novel revisions to parameter spatial scaling guidelines to improve integration of existing time series data on ecosystem change into the RLS assessment process.

摘要

《国际自然保护联盟濒危物种红色名录》(RLS)是客观、可重复评估物种灭绝风险状况的关键全球工具,在跟踪生物多样性丧失和指导保护行动方面发挥着至关重要的作用。全球生态系统分布和功能的卫星遥感(SRS)数据集在为基于范围的 RLS 评估提供信息方面显示出令人兴奋的潜力,但由于数据集的时间分辨率和覆盖范围低、未纳入退化驱动的栖息地损失、以及未纳入与具有不同栖息地依赖性和生态的类群的不断变化的栖息地分布相关的假设,其应用受到限制。对于鲜为人知的古巴树栖卷尾猴(Mesocapromys spp.),我们测试了这些问题的假设对基于范围的 RLS 评估结果的影响。具体来说,我们使用年度(1985-2018 年)陆地卫星数据和土地覆盖分类以及不同内部时间序列切片的栖息地退化分析,模拟了我们案例研究类群的基于范围的 RLS 评估,以探索由于时间 SRS 数据集覆盖范围、纳入(栖息地质量变化的)栖息地质量代理以及 RLS 参数生成的栖息地范围空间比例假设而产生的潜在评估不确定性。我们发现模拟的物种特定基于范围的 RLS 评估存在广泛的差异,这种差异主要与参数估计的时间序列有关。然而,由于纳入栖息地质量和 RLS 参数估计中使用的空间比例的影响,某些特定物种的评估结果在同一时间序列内相差多达 3 个类别(近危到极危)。我们的结果表明,在 RLS 评估中一刀切地纳入 SRS 信息的方法是不合适的,对于那些对特定生态系统类型的栖息地依赖性理解不完整的物种,我们在使用 SRS 进行基于范围的评估时应谨慎行事。我们提出了对参数空间比例指南的新修订,以改善将现有关于生态系统变化的时间序列数据纳入 RLS 评估过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验