Vangrysperre W, Callens M, Kersters-Hilderson H, De Bruyne C K
Laboratorium voor Biochemie, Rijksuniversiteit Gent, Belgium.
Biochem J. 1988 Feb 15;250(1):153-60. doi: 10.1042/bj2500153.
Diethyl pyrocarbonate inactivated D-xylose isomerases from Streptomyces violaceoruber, Streptomyces sp., Lactobacillus xylosus and Lactobacillus brevis with second-order rate constants of 422, 417, 99 and 92 M-1.min-1 respectively (at pH 6.0 and 25 degrees C). Activity was completely restored by the addition of neutral hydroxylamine, and total protection was afforded by the substrate analogue xylitol in the presence of either Mg2+ or Mn2+ according to the genus studied. The difference spectra of the modified enzymes revealed an absorption maximum at 237-242 nm, characteristic for N-ethoxycarbonylhistidine. In addition, the spectrum of ethoxycarbonylated D-xylose isomerase from L. xylosus showed absorption minima at both 280 and 230 nm, indicative for modification of tyrosine residues. Nitration with tetranitromethane followed by diethyl pyrocarbonate treatment eliminated the possibility that modification of tyrosine residues was responsible for inactivation, and resulted in modification of one non-essential tyrosine residue and six histidine residues. Inactivation of the other D-xylose isomerases with diethyl pyrocarbonate required the modification of one (L. brevis), two (Streptomyces sp.) and four (S. violaceoruber) histidine residues per monomer. Spectral analysis and maintenance of total enzyme activities further indicated that either xylitol Mg2+ (streptomycetes) or xylitol Mn2+ (lactobacilli) prevented the modification of one crucial histidine residue. The overall results thus provide evidence that a single active-site histidine residue is involved in the catalytic reaction mechanism of D-xylose isomerases.
焦碳酸二乙酯使来自变紫链霉菌、链霉菌属、木糖氧化乳杆菌和短乳杆菌的D-木糖异构酶失活,二级速率常数分别为422、417、99和92 M-1·min-1(在pH 6.0和25℃下)。加入中性羟胺可使活性完全恢复,根据所研究的属,在Mg2+或Mn2+存在下,底物类似物木糖醇可提供完全保护。修饰酶的差示光谱显示在237 - 242 nm处有最大吸收峰,这是N-乙氧羰基组氨酸的特征。此外,木糖氧化乳杆菌的乙氧羰基化D-木糖异构酶光谱在280和230 nm处均有最小吸收峰,表明酪氨酸残基发生了修饰。用四硝基甲烷硝化后再用焦碳酸二乙酯处理排除了酪氨酸残基修饰导致失活的可能性,并导致一个非必需酪氨酸残基和六个组氨酸残基的修饰。用焦碳酸二乙酯使其他D-木糖异构酶失活,每个单体需要修饰一个(短乳杆菌)、两个(链霉菌属)和四个(变紫链霉菌)组氨酸残基。光谱分析和总酶活性的维持进一步表明,木糖醇Mg2+(链霉菌)或木糖醇Mn2+(乳杆菌)可防止一个关键组氨酸残基的修饰。因此,总体结果提供了证据,表明单个活性位点组氨酸残基参与了D-木糖异构酶的催化反应机制。