Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.
J Phys Chem B. 2021 Feb 18;125(6):1568-1581. doi: 10.1021/acs.jpcb.0c11618. Epub 2021 Feb 8.
A new force field has been created for simulating hydrated alanine polypeptides using the adaptive force matching (AFM) method. Only density functional theory calculations using the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 dispersion correction were used to fit the force field. The new force field, AFM2020, predicts NMR scalar coupling constants for hydrated homopolymeric alanine in better agreements with experimental data than several other models including those fitted directly to such data. For Ala, the new force field shows about 15% helical conformations, 20% conformation in the β basin, and 65% polyproline II. The predicted helical population of short hydrated alanine is higher than previous estimates based on the same experimental data. Gas-phase simulations indicate that the force field developed by AFM solution-phase data is likely to produce a reasonable conformation distribution when hydration water is no longer present, such as the interior of a protein.
一种新的力场已被创建,用于使用自适应力匹配(AFM)方法模拟水合丙氨酸多肽。仅使用密度泛函理论计算,使用 Perdew-Burke-Ernzerhof 交换相关泛函和 D3 色散校正来拟合力场。新的力场 AFM2020 预测水合均聚丙氨酸的 NMR 标量耦合常数与实验数据的一致性优于其他几个模型,包括直接拟合此类数据的模型。对于 Ala,新力场显示约 15%的螺旋构象、20%的β盆地构象和 65%的聚脯氨酸 II。与基于相同实验数据的先前估计相比,预测的短水合丙氨酸螺旋种群更高。气相模拟表明,当不再存在水合水分子时,例如在蛋白质内部,由 AFM 溶液相数据开发的力场可能会产生合理的构象分布。