Suppr超能文献

HRSiam:高分辨率暹罗网络,用于星载卫星视频跟踪

HRSiam: High-Resolution Siamese Network, Towards Space-Borne Satellite Video Tracking.

作者信息

Shao Jia, Du Bo, Wu Chen, Gong Mingming, Liu Tongliang

出版信息

IEEE Trans Image Process. 2021;30:3056-3068. doi: 10.1109/TIP.2020.3045634. Epub 2021 Feb 24.

Abstract

Tracking moving objects from space-borne satellite videos is a new and challenging task. The main difficulty stems from the extremely small size of the target of interest. First, because the target usually occupies only a few pixels, it is hard to obtain discriminative appearance features. Second, the small object can easily suffer from occlusion and illumination variation, making the features of objects less distinguishable from features in surrounding regions. Current state-of-the-art tracking approaches mainly consider high-level deep features of a single frame with low spatial resolution, and hardly benefit from inter-frame motion information inherent in videos. Thus, they fail to accurately locate such small objects and handle challenging scenarios in satellite videos. In this article, we successfully design a lightweight parallel network with a high spatial resolution to locate the small objects in satellite videos. This architecture guarantees real-time and precise localization when applied to the Siamese Trackers. Moreover, a pixel-level refining model based on online moving object detection and adaptive fusion is proposed to enhance the tracking robustness in satellite videos. It models the video sequence in time to detect the moving targets in pixels and has ability to take full advantage of tracking and detecting. We conduct quantitative experiments on real satellite video datasets, and the results show the proposed HIGH-RESOLUTION SIAMESE NETWORK (HRSiam) achieves state-of-the-art tracking performance while running at over 30 FPS.

摘要

从星载卫星视频中跟踪移动物体是一项全新且具有挑战性的任务。主要困难源于感兴趣目标的尺寸极小。首先,由于目标通常仅占据几个像素,难以获取具有区分性的外观特征。其次,小物体很容易受到遮挡和光照变化的影响,使得物体的特征与周围区域的特征难以区分。当前最先进的跟踪方法主要考虑具有低空间分辨率的单帧高级深度特征,几乎无法从视频中固有的帧间运动信息中受益。因此,它们无法准确地定位此类小物体并处理卫星视频中的具有挑战性的场景。在本文中,我们成功设计了一种具有高空间分辨率的轻量级并行网络,用于在卫星视频中定位小物体。当应用于暹罗跟踪器时,这种架构保证了实时且精确的定位。此外,还提出了一种基于在线移动物体检测和自适应融合的像素级细化模型,以增强卫星视频中的跟踪鲁棒性。它对视频序列进行实时建模以检测像素级的移动目标,并能够充分利用跟踪和检测的优势。我们在真实卫星视频数据集上进行了定量实验,结果表明所提出的高分辨率暹罗网络(HRSiam)在以超过30帧每秒的速度运行时实现了最先进的跟踪性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验