Suppr超能文献

AP-CNN:用于细粒度视觉分类的弱监督注意力金字塔卷积神经网络。

AP-CNN: Weakly Supervised Attention Pyramid Convolutional Neural Network for Fine-Grained Visual Classification.

出版信息

IEEE Trans Image Process. 2021;30:2826-2836. doi: 10.1109/TIP.2021.3055617. Epub 2021 Feb 12.

Abstract

Classifying the sub-categories of an object from the same super-category (e.g., bird species and cars) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this article, by contrast, we show that by integrating low-level information (e.g., color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of 1) a dual pathway hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, hence learning both high-level semantic and low-level detailed feature representation, and 2) an ROI-guided refinement strategy with ROI-guided dropblock and ROI-guided zoom-in operation, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of any additional bounding box/part annotation. Extensive experiments on three popularly tested FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach achieves state-of-the-art performance. Models and code are available at https://github.com/PRIS-CV/AP-CNN_Pytorch-master.

摘要

从同一超类别(例如鸟类物种和汽车)中对物体的子类别进行分类,这在细粒度视觉分类(FGVC)中高度依赖于有区分力的特征表示和准确的区域定位。现有的方法主要集中于从高级特征中提取信息。相比之下,在本文中,我们展示了通过整合低水平信息(例如颜色、边缘交汇、纹理模式),可以通过增强特征表示和准确定位的判别区域来提高性能。我们的解决方案名为 Attention Pyramid Convolutional Neural Network(AP-CNN),由 1)具有自上而下的特征路径和自下而上的注意力路径的双通道层次结构组成,从而学习高级语义和低级详细特征表示,2)具有 ROI 引导细化策略的 ROI 引导 dropout 和 ROI 引导放大操作,该策略使用增强的判别性局部区域和消除背景噪声来细化特征。所提出的 AP-CNN 可以端到端训练,而无需任何额外的边界框/部分注释。在三个广泛测试的 FGVC 数据集(CUB-200-2011、斯坦福汽车和 FGVC-飞机)上进行的大量实验表明,我们的方法达到了最先进的性能。模型和代码可在 https://github.com/PRIS-CV/AP-CNN_Pytorch-master 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验