Suppr超能文献

PathoFusion:一种用于识别病理形态学特征和免疫组织化学数据映射的开源人工智能框架。

PathoFusion: An Open-Source AI Framework for Recognition of Pathomorphological Features and Mapping of Immunohistochemical Data.

作者信息

Bao Guoqing, Wang Xiuying, Xu Ran, Loh Christina, Adeyinka Oreoluwa Daniel, Pieris Dula Asheka, Cherepanoff Svetlana, Gracie Gary, Lee Maggie, McDonald Kerrie L, Nowak Anna K, Banati Richard, Buckland Michael E, Graeber Manuel B

机构信息

School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia.

Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Cancers (Basel). 2021 Feb 4;13(4):617. doi: 10.3390/cancers13040617.

Abstract

We have developed a platform, termed PathoFusion, which is an integrated system for marking, training, and recognition of pathological features in whole-slide tissue sections. The platform uses a bifocal convolutional neural network (BCNN) which is designed to simultaneously capture both index and contextual feature information from shorter and longer image tiles, respectively. This is analogous to how a microscopist in pathology works, identifying a cancerous morphological feature in the tissue context using first a narrow and then a wider focus, hence bifocal. Adjacent tissue sections obtained from glioblastoma cases were processed for hematoxylin and eosin (H&E) and immunohistochemical (CD276) staining. Image tiles cropped from the digitized images based on markings made by a consultant neuropathologist were used to train the BCNN. PathoFusion demonstrated its ability to recognize malignant neuropathological features autonomously and map immunohistochemical data simultaneously. Our experiments show that PathoFusion achieved areas under the curve (AUCs) of 0.985 ± 0.011 and 0.988 ± 0.001 in patch-level recognition of six typical pathomorphological features and detection of associated immunoreactivity, respectively. On this basis, the system further correlated CD276 immunoreactivity to abnormal tumor vasculature. Corresponding feature distributions and overlaps were visualized by heatmaps, permitting high-resolution qualitative as well as quantitative morphological analyses for entire histological slides. Recognition of more user-defined pathomorphological features can be added to the system and included in future tissue analyses. Integration of PathoFusion with the day-to-day service workflow of a (neuro)pathology department is a goal. The software code for PathoFusion is made publicly available.

摘要

我们开发了一个名为PathoFusion的平台,它是一个用于在全组织切片中标记、训练和识别病理特征的集成系统。该平台使用了一种双焦点卷积神经网络(BCNN),其设计目的是分别从较短和较长的图像块中同时捕获索引和上下文特征信息。这类似于病理学中的显微镜学家的工作方式,即先使用窄焦点然后使用宽焦点在组织背景中识别癌形态特征,因此称为双焦点。从胶质母细胞瘤病例中获取的相邻组织切片进行苏木精和伊红(H&E)染色以及免疫组织化学(CD276)染色。根据神经病理顾问医生所做的标记从数字化图像中裁剪出的图像块用于训练BCNN。PathoFusion展示了其自主识别恶性神经病理特征并同时映射免疫组织化学数据的能力。我们的实验表明,PathoFusion在六种典型病理形态特征的斑块级识别和相关免疫反应性检测中,曲线下面积(AUC)分别达到0.985±0.011和0.988±0.001。在此基础上,该系统进一步将CD276免疫反应性与异常肿瘤血管系统相关联。相应的特征分布和重叠通过热图可视化,从而能够对整个组织学切片进行高分辨率定性和定量形态分析。更多用户定义的病理形态特征的识别可以添加到系统中,并纳入未来的组织分析。将PathoFusion与(神经)病理科的日常服务工作流程集成是一个目标。PathoFusion的软件代码已公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/883c/7913958/69bca834a2cd/cancers-13-00617-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验