Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac367.
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
在常见的医疗程序中,获取测试结果的耗时和昂贵性质困扰着医生和患者。数字病理学研究允许使用计算技术来管理数据,为提高诊断和治疗效率提供了机会。人工智能 (AI) 在数据分析阶段具有很大的优势。大量研究表明,AI 算法可以为全幻灯片图像生成更及时和标准化的结论。结合高通量测序技术的发展,算法可以整合和分析来自多种模式的数据,以探索形态特征和基因表达之间的对应关系。本综述探讨了使用最流行的图像数据,即苏木精-伊红染色组织幻灯片图像,为医疗资源不平衡问题寻找一个战略解决方案。本文重点介绍了深度学习技术的发展在协助医生工作方面的作用,并讨论了 AI 的机遇和挑战。
Brief Bioinform. 2022-11-19
Surg Pathol Clin. 2023-12
Database (Oxford). 2022-10-17
Genomics Proteomics Bioinformatics. 2025-5-10
J Med Internet Res. 2025-2-14
Quant Imaging Med Surg. 2024-8-1
Ann Oncol. 2022-1
Cancers (Basel). 2021-9-28
Bioinformatics. 2022-1-3