文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态人工智能在数字病理学中的应用。

Multi-modality artificial intelligence in digital pathology.

机构信息

Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac367.


DOI:10.1093/bib/bbac367
PMID:36124675
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9677480/
Abstract

In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.

摘要

在常见的医疗程序中,获取测试结果的耗时和昂贵性质困扰着医生和患者。数字病理学研究允许使用计算技术来管理数据,为提高诊断和治疗效率提供了机会。人工智能 (AI) 在数据分析阶段具有很大的优势。大量研究表明,AI 算法可以为全幻灯片图像生成更及时和标准化的结论。结合高通量测序技术的发展,算法可以整合和分析来自多种模式的数据,以探索形态特征和基因表达之间的对应关系。本综述探讨了使用最流行的图像数据,即苏木精-伊红染色组织幻灯片图像,为医疗资源不平衡问题寻找一个战略解决方案。本文重点介绍了深度学习技术的发展在协助医生工作方面的作用,并讨论了 AI 的机遇和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/b6e01068679e/bbac367f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/0c64aaceadc6/bbac367f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/567a3ddc71c4/bbac367f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/b6e01068679e/bbac367f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/0c64aaceadc6/bbac367f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/567a3ddc71c4/bbac367f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891c/9677480/b6e01068679e/bbac367f3.jpg

相似文献

[1]
Multi-modality artificial intelligence in digital pathology.

Brief Bioinform. 2022-11-19

[2]
The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images.

J Pathol. 2022-1

[3]
Deep Learning and Colon Cancer Interpretation: Rise of the Machine.

Surg Pathol Clin. 2023-12

[4]
Digital Technology in Diagnostic Breast Pathology and Immunohistochemistry.

Pathobiology. 2022

[5]
Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.

J Gastroenterol. 2022-9

[6]
BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images.

Database (Oxford). 2022-10-17

[7]
Development of a multi-scanner facility for data acquisition for digital pathology artificial intelligence.

J Pathol. 2024-9

[8]
Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.

JAMA Netw Open. 2020-5-1

[9]
Utility of Machine Learning to Detect Cytomegalovirus in Digital Hematoxylin and Eosin-Stained Slides.

Lab Invest. 2023-10

[10]
Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.

J Pathol Clin Res. 2022-3

引用本文的文献

[1]
AI-powered prediction model for neoadjuvant chemotherapy efficacy: comprehensive analysis of breast cancer histological images.

NPJ Precis Oncol. 2025-7-15

[2]
AI assistance enhances histopathologic distinction between sebaceous and squamous cell carcinoma of the eyelid.

NPJ Digit Med. 2025-7-4

[3]
Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis.

Genomics Proteomics Bioinformatics. 2025-5-10

[4]
Artificial Intelligence in Lymphoma Histopathology: Systematic Review.

J Med Internet Res. 2025-2-14

[5]
Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.

Cancer Biol Med. 2025-1-2

[6]
Relationship between EZH2 expression and prognosis of patients with hepatocellular carcinoma using a pathomics predictive model.

Heliyon. 2024-9-28

[7]
Interactivity, humanness, and trust: a psychological approach to AI chatbot adoption in e-commerce.

BMC Psychol. 2024-10-28

[8]
Predicting lymph node recurrence in cT1-2N0 tongue squamous cell carcinoma: collaboration between artificial intelligence and pathologists.

J Pathol Clin Res. 2024-9

[9]
DLCNBC-SA: a model for assessing axillary lymph node metastasis status in early breast cancer patients.

Quant Imaging Med Surg. 2024-8-1

[10]
Physician Versus Large Language Model Chatbot Responses to Web-Based Questions From Autistic Patients in Chinese: Cross-Sectional Comparative Analysis.

J Med Internet Res. 2024-4-30

本文引用的文献

[1]
Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels.

Med Image Anal. 2022-8

[2]
NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer.

Gigascience. 2022-5-17

[3]
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge.

Nat Med. 2022-1

[4]
Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review.

Eur J Cancer. 2022-1

[5]
Improved breast cancer histological grading using deep learning.

Ann Oncol. 2022-1

[6]
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides.

Front Oncol. 2021-10-14

[7]
Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer.

Cancers (Basel). 2021-9-28

[8]
Explainable nucleus classification using Decision Tree Approximation of Learned Embeddings.

Bioinformatics. 2022-1-3

[9]
Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.

J Pathol. 2022-1

[10]
Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning.

NPJ Precis Oncol. 2021-9-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索