School of Software, East China Jiaotong University, Nanchang, 330013, China.
School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
BMC Bioinformatics. 2021 Feb 8;22(1):52. doi: 10.1186/s12859-021-03988-x.
Drug repositioning refers to the identification of new indications for existing drugs. Drug-based inference methods for drug repositioning apply some unique features of drugs for new indication prediction. Complementary information is provided by these different features. It is therefore necessary to integrate these features for more accurate in silico drug repositioning.
In this study, we collect 3 different types of drug features (i.e., chemical, genomic and pharmacological spaces) from public databases. Similarities between drugs are separately calculated based on each of the features. We further develop a fusion method to combine the 3 similarity measurements. We test the inference abilities of the 4 similarity datasets in drug repositioning under the guilt-by-association principle. Leave-one-out cross-validations show the integrated similarity measurement IntegratedSim receives the best prediction performance, with the highest AUC value of 0.8451 and the highest AUPR value of 0.2201. Case studies demonstrate IntegratedSim produces the largest numbers of confirmed predictions in most cases. Moreover, we compare our integration method with 3 other similarity-fusion methods using the datasets in our study. Cross-validation results suggest our method improves the prediction accuracy in terms of AUC and AUPR values.
Our study suggests that the 3 drug features used in our manuscript are valuable information for drug repositioning. The comparative results indicate that integration of the 3 drug features would improve drug-disease association prediction. Our study provides a strategy for the fusion of different drug features for in silico drug repositioning.
药物重定位是指确定现有药物的新适应症。基于药物的药物重定位推断方法应用药物的一些独特特征进行新适应症预测。这些不同的特征提供了互补的信息。因此,有必要整合这些特征以进行更准确的计算机药物重定位。
在这项研究中,我们从公共数据库中收集了 3 种不同类型的药物特征(即化学、基因组和药理学空间)。分别基于每种特征计算药物之间的相似度。我们进一步开发了一种融合方法来组合这 3 种相似度测量值。我们根据关联定罪原则在药物重定位下测试了 4 种相似度数据集的推断能力。留一交叉验证显示,综合相似度测量值 IntegratedSim 获得了最佳的预测性能,AUC 值最高为 0.8451,AUPR 值最高为 0.2201。案例研究表明,在大多数情况下,IntegratedSim 产生了最多数量的确认预测。此外,我们使用研究中使用的数据集,将我们的集成方法与其他 3 种相似性融合方法进行了比较。交叉验证结果表明,我们的方法在 AUC 和 AUPR 值方面提高了预测准确性。
我们的研究表明,本文使用的 3 种药物特征对于药物重定位是有价值的信息。比较结果表明,整合这 3 种药物特征可以提高药物-疾病关联预测的准确性。我们的研究为计算机药物重定位的不同药物特征融合提供了一种策略。