Department of Neurobiology and Behavior, University of California, Irvine, CA 92697.
Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
eNeuro. 2021 Mar 22;8(2). doi: 10.1523/ENEURO.0318-20.2021. Print 2021 Mar-Apr.
Signaling between neurons and glia is necessary for the formation of functional neural circuits. A role for microglia in the maturation of connections in the medial nucleus of the trapezoid body (MNTB) was previously demonstrated by postnatal microglial elimination using a colony stimulating factor 1 receptor (CSF1R). Defective pruning of calyces of Held and significant reduction of the mature astrocyte marker glial fibrillary acidic protein (GFAP) were observed after hearing onset. Here, we investigated the time course required for microglia to populate the mouse MNTB after cessation of CSF1R inhibitor treatment. We then examined whether defects seen after microglial depletion were rectified by microglial repopulation. We found that microglia returned to control levels at four weeks of age (18 d postcessation of treatment). Calyceal innervation of MNTB neurons was comparable to control levels at four weeks and GFAP expression recovered by seven weeks. We further investigated the effects of microglia elimination and repopulation on auditory function using auditory brainstem recordings (ABRs). Temporary microglial depletion significantly elevated auditory thresholds in response to 4. 8, and 12 kHz at four weeks. Treatment significantly affected latencies, interpeak latencies, and amplitudes of all the ABR peaks in response to many of the frequencies tested. These effects largely recovered by seven weeks. These findings highlight the functions of microglia in the formation of auditory neural circuits early in development. Further, the results suggest that microglia retain their developmental functions beyond the period of circuit refinement.
神经元和神经胶质之间的信号传递对于功能性神经回路的形成是必要的。先前通过使用集落刺激因子 1 受体 (CSF1R) 进行产后小胶质细胞消除,证明了小胶质细胞在梯形体中核 (MNTB) 的连接成熟中的作用。在听力开始后,观察到 Held 钙簇的修剪缺陷和成熟星形胶质细胞标记物胶质纤维酸性蛋白 (GFAP) 的显著减少。在这里,我们研究了在停止 CSF1R 抑制剂治疗后,小胶质细胞在小鼠 MNTB 中定植所需的时间过程。然后,我们检查了小胶质细胞耗竭后观察到的缺陷是否通过小胶质细胞再定植得到纠正。我们发现小胶质细胞在 4 周龄(治疗停止后 18 天)时恢复到对照水平。MNTB 神经元的钙簇神经支配在 4 周时与对照水平相当,GFAP 表达在 7 周时恢复。我们进一步使用听觉脑干记录 (ABR) 研究了小胶质细胞消除和再定植对听觉功能的影响。暂时的小胶质细胞耗竭在 4 周时显著提高了对 4.8、12kHz 的听觉阈值。治疗显著影响了所有 ABR 峰的潜伏期、峰间潜伏期和幅度,对许多测试频率均有影响。这些影响在 7 周时基本恢复。这些发现强调了小胶质细胞在早期发育中形成听觉神经回路中的功能。此外,结果表明小胶质细胞在回路细化期之后保留其发育功能。