Suppr超能文献

巨噬细胞促进噪声诱导耳蜗突触病变后内毛细胞带状突触的修复。

Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy.

机构信息

Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178.

Department of Otolaryngology, School of Medicine, Washington University, St. Louis, Missouri 63110.

出版信息

J Neurosci. 2023 Mar 22;43(12):2075-2089. doi: 10.1523/JNEUROSCI.1273-22.2023. Epub 2023 Feb 21.

Abstract

Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy. The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.

摘要

内毛细胞突触区的驻留小胶质细胞在噪声诱导的突触病后迅速迁移,并直接与受损的突触连接接触。最终,这些受损的突触会自发修复,但小胶质细胞在突触变性和修复中的确切作用仍不清楚。为了解决这个问题,我们使用集落刺激因子 1 受体(CSF1R)抑制剂 PLX5622 消除了耳蜗中的小胶质细胞。在雄性和雌性小鼠中持续使用 PLX5622 治疗可导致驻留小胶质细胞(约 94%)的有效消除,而对周围白细胞、耳蜗功能和结构无明显不良影响。在噪声暴露后 1 天(d),93 或 90 dB SPL 噪声暴露 2 小时,在有或没有小胶质细胞的情况下,听力损失和突触损失的程度相当。在暴露后 30 d,在有小胶质细胞的情况下,受损的突触似乎得到了修复。然而,在没有小胶质细胞的情况下,这种突触修复明显减少。值得注意的是,在停止 PLX5622 治疗后,小胶质细胞重新填充耳蜗,导致突触修复增强。在没有小胶质细胞的情况下,听觉脑干反应阈值升高和听觉脑干反应峰 1 幅度降低的恢复有限,但在有驻留和重新填充的小胶质细胞时恢复相似。在没有小胶质细胞的情况下,耳蜗神经元损失增加,但在噪声暴露后,有驻留和重新填充的小胶质细胞时则得到保留。虽然 PLX5622 治疗和小胶质细胞耗竭对中枢听觉的影响仍有待研究,但这些数据表明,小胶质细胞不会影响突触变性,但对于噪声诱导的突触病后耳蜗突触和功能的恢复是必要和充分的。由于过度暴露于噪声或生物老化,耳蜗内毛细胞和螺旋神经节神经元之间的突触连接可能会丢失。这种丢失可能是感觉神经性听力损失(也称为隐匿性听力损失)最常见的原因。突触丢失导致听觉信息退化,导致在嘈杂环境中听力困难和其他听觉感知障碍。我们证明,耳蜗内的驻留小胶质细胞是恢复突触和功能所必需的,这可能被用来再生噪声或年龄相关的耳蜗突触病、隐匿性听力损失和相关的感知异常中的丢失的带状突触。我们的工作揭示了先天免疫细胞(如小胶质细胞)在突触修复中的新作用,这可能被用来再生噪声或年龄相关的耳蜗突触病、隐匿性听力损失和相关的感知异常中的丢失的带状突触。

相似文献

1
Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy.
J Neurosci. 2023 Mar 22;43(12):2075-2089. doi: 10.1523/JNEUROSCI.1273-22.2023. Epub 2023 Feb 21.
2
Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
Acta Otolaryngol. 2015;135(11):1093-102. doi: 10.3109/00016489.2015.1061699. Epub 2015 Jul 3.
3
Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
J Neurosci. 2015 May 13;35(19):7509-20. doi: 10.1523/JNEUROSCI.5138-14.2015.
4
Vesicular Glutamatergic Transmission in Noise-Induced Loss and Repair of Cochlear Ribbon Synapses.
J Neurosci. 2019 Jun 5;39(23):4434-4447. doi: 10.1523/JNEUROSCI.2228-18.2019. Epub 2019 Mar 29.
6
Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure.
Neural Plast. 2021 Jun 9;2021:9919977. doi: 10.1155/2021/9919977. eCollection 2021.
7
Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
J Neurosci. 2018 Aug 8;38(32):7108-7119. doi: 10.1523/JNEUROSCI.3240-17.2018. Epub 2018 Jul 5.
8
Functional alteration of ribbon synapses in inner hair cells by noise exposure causing hidden hearing loss.
Neurosci Lett. 2019 Aug 10;707:134268. doi: 10.1016/j.neulet.2019.05.022. Epub 2019 May 16.
9
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
Hear Res. 2015 Dec;330(Pt B):191-9. doi: 10.1016/j.heares.2015.02.009. Epub 2015 Mar 11.
10
Use of non-invasive measures to predict cochlear synapse counts.
Hear Res. 2018 Dec;370:113-119. doi: 10.1016/j.heares.2018.10.006. Epub 2018 Oct 13.

引用本文的文献

1
Investigating cochlear cellular dynamics in neurofibromatosis type 2-associated schwannomatosis: a histopathological study.
Front Neurol. 2025 Aug 15;16:1650470. doi: 10.3389/fneur.2025.1650470. eCollection 2025.
4
5
The Common Marmoset as a Novel Non-human Primate Model for Inner Ear Research.
JMA J. 2025 Jul 15;8(3):679-688. doi: 10.31662/jmaj.2025-0142. Epub 2025 May 30.
6
Inhibition of inner ear macrophage phagocytosis alleviates cisplatin-induced ototoxicity.
Commun Biol. 2025 Jul 30;8(1):1134. doi: 10.1038/s42003-025-08525-7.
9
Paving the way for better ototoxicity assessments in cisplatin therapy using more reliable animal models.
Front Cell Neurosci. 2025 Mar 5;19:1552051. doi: 10.3389/fncel.2025.1552051. eCollection 2025.

本文引用的文献

1
Auditory-nerve responses in mice with noise-induced cochlear synaptopathy.
J Neurophysiol. 2021 Dec 1;126(6):2027-2038. doi: 10.1152/jn.00342.2021. Epub 2021 Nov 17.
2
Microglia control glutamatergic synapses in the adult mouse hippocampus.
Glia. 2022 Jan;70(1):173-195. doi: 10.1002/glia.24101. Epub 2021 Oct 18.
3
Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup.
Front Cell Neurosci. 2021 Aug 9;15:684706. doi: 10.3389/fncel.2021.684706. eCollection 2021.
4
Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores.
J Neurosci. 2021 May 19;41(20):4439-4447. doi: 10.1523/JNEUROSCI.3238-20.2021. Epub 2021 Apr 21.
6
Auditory Brainstem Deficits from Early Treatment with a CSF1R Inhibitor Largely Recover with Microglial Repopulation.
eNeuro. 2021 Mar 22;8(2). doi: 10.1523/ENEURO.0318-20.2021. Print 2021 Mar-Apr.
9
CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23336-23338. doi: 10.1073/pnas.1922788117. Epub 2020 Sep 8.
10
Evoked Potentials Reveal Noise Exposure-Related Central Auditory Changes Despite Normal Audiograms.
Am J Audiol. 2020 Jun 8;29(2):152-164. doi: 10.1044/2019_AJA-19-00060. Epub 2020 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验