Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel.
Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Diabetologia. 2021 May;64(5):1133-1143. doi: 10.1007/s00125-021-05390-x. Epub 2021 Feb 9.
AIMS/HYPOTHESIS: Acute hyperglycaemia stimulates pancreatic beta cell proliferation in the mouse whereas chronic hyperglycaemia appears to be toxic. We hypothesise that this toxic effect is mediated by increased beta cell workload, unrelated to hyperglycaemia per se.
To test this hypothesis, we developed a novel mouse model of cell-autonomous increased beta cell glycolytic flux caused by a conditional heterozygous beta cell-specific mutation that activates glucokinase (GCK), mimicking key aspects of the rare human genetic disease GCK-congenital hyperinsulinism.
In the mutant mice, we observed random and fasting hypoglycaemia (random 4.5-5.4 mmol/l and fasting 3.6 mmol/l) that persisted for 15 months. GCK activation led to increased beta cell proliferation as measured by Ki67 expression (2.7% vs 1.5%, mutant and wild-type (WT), respectively, p < 0.01) that resulted in a 62% increase in beta cell mass in young mice. However, by 8 months of age, mutant mice developed impaired glucose tolerance, which was associated with decreased absolute beta cell mass from 2.9 mg at 1.5 months to 1.8 mg at 8 months of age, with preservation of individual beta cell function. Impaired glucose tolerance was further exacerbated by a high-fat/high-sucrose diet (AUC 1796 vs 966 mmol/l × min, mutant and WT, respectively, p < 0.05). Activation of GCK was associated with an increased DNA damage response and an elevated expression of Chop, suggesting metabolic stress as a contributor to beta cell death.
CONCLUSIONS/INTERPRETATION: We propose that increased workload-driven biphasic beta cell dynamics contribute to decreased beta cell function observed in long-standing congenital hyperinsulinism and type 2 diabetes.
目的/假设:急性高血糖会刺激小鼠胰岛β细胞增殖,而慢性高血糖似乎具有毒性。我们假设这种毒性作用是由β细胞工作量增加介导的,与高血糖本身无关。
为了验证这一假设,我们开发了一种新型的小鼠模型,该模型中胰岛β细胞糖酵解通量的增加是由条件杂合的β细胞特异性突变引起的,该突变激活了葡萄糖激酶(GCK),模拟了罕见的人类遗传性疾病 GCK-先天性高胰岛素血症的关键方面。
在突变小鼠中,我们观察到随机和空腹低血糖(随机 4.5-5.4mmol/l 和空腹 3.6mmol/l)持续了 15 个月。GCK 激活导致 Ki67 表达增加(突变型和野生型分别为 2.7%和 1.5%,p<0.01),导致年轻小鼠β细胞数量增加 62%。然而,到 8 个月大时,突变小鼠出现葡萄糖耐量受损,这与β细胞绝对数量减少有关,从 1.5 个月时的 2.9mg 减少到 8 个月时的 1.8mg,而单个β细胞功能得以保留。高脂肪/高蔗糖饮食进一步加重了葡萄糖耐量受损(AUC 1796 对 966mmol/l×min,突变型和 WT 型,分别,p<0.05)。GCK 的激活与 DNA 损伤反应的增加和 Chop 表达的升高有关,这表明代谢应激是β细胞死亡的一个促成因素。
结论/解释:我们提出,增加的工作负荷驱动的双相β细胞动力学导致长期先天性高胰岛素血症和 2 型糖尿病中观察到的β细胞功能下降。