Suppr超能文献

拥抱:通过 Copas 模型估计进行基于 EM 的偏差减少方法,用于定量评估网络荟萃分析中选择性发表的证据。

EMBRACE: An EM-based bias reduction approach through Copas-model estimation for quantifying the evidence of selective publishing in network meta-analysis.

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.

出版信息

Biometrics. 2022 Jun;78(2):754-765. doi: 10.1111/biom.13441. Epub 2021 Feb 24.

Abstract

Systematic reviews and meta-analyses synthesize results from well-conducted studies to optimize healthcare decision-making. Network meta-analysis (NMA) is particularly useful for improving precision, drawing new comparisons, and ranking multiple interventions. However, recommendations can be misled if published results are a selective sample of what has been collected by trialists, particularly when publication status is related to the significance of the findings. Unfortunately, the missing-not-at-random nature of this problem and the numerous parameters involved in modeling NMAs pose unique computational challenges to quantifying and correcting for publication bias, such that sensitivity analysis is used in practice. Motivated by this important methodological gap, we developed a novel and stable expectation-maximization (EM) algorithm to correct for publication bias in the network setting. We validate the method through simulation studies and show that it achieves substantial bias reduction in small to moderately sized NMAs. We also calibrate the method against a Bayesian analysis of a published NMA on antiplatlet therapies for maintaining vascular patency.

摘要

系统评价和荟萃分析综合了精心设计的研究结果,以优化医疗保健决策。网络荟萃分析(NMA)特别有助于提高精度、进行新的比较和对多种干预措施进行排名。然而,如果发表的结果只是试验者收集的结果的选择性样本,特别是当发表状态与研究结果的显著性相关时,那么建议可能会产生误导。不幸的是,这个问题的非随机缺失性质以及 NMA 建模中涉及的众多参数对量化和纠正发表偏倚提出了独特的计算挑战,因此在实践中使用敏感性分析。受此重要方法学差距的启发,我们开发了一种新颖且稳定的期望最大化(EM)算法,以纠正网络环境中的发表偏倚。我们通过模拟研究验证了该方法,并表明它在小型到中型 NMA 中实现了大量的偏差减少。我们还针对一项关于维持血管通畅的抗血小板治疗的已发表 NMA 的贝叶斯分析对该方法进行了校准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验