Suppr超能文献

利用初级保健电子健康记录估计肌肉骨骼疾病对人群健康的负担。

Estimating the population health burden of musculoskeletal conditions using primary care electronic health records.

机构信息

Primary Care Centre Versus Arthritis, School of Medicine, Keele University.

MRC Versus Arthritis Centre for Musculoskeletal Health and Work, University of Southampton, Southampton.

出版信息

Rheumatology (Oxford). 2021 Oct 2;60(10):4832-4843. doi: 10.1093/rheumatology/keab109.

Abstract

OBJECTIVES

Better indicators from affordable, sustainable data sources are needed to monitor population burden of musculoskeletal conditions. We propose five indicators of musculoskeletal health and assessed if routinely available primary care electronic health records (EHR) can estimate population levels in musculoskeletal consulters.

METHODS

We collected validated patient-reported measures of pain experience, function and health status through a local survey of adults (≥35 years) presenting to English general practices over 12 months for low back pain, shoulder pain, osteoarthritis and other regional musculoskeletal disorders. Using EHR data we derived and validated models for estimating population levels of five self-reported indicators: prevalence of high impact chronic pain, overall musculoskeletal health (based on Musculoskeletal Health Questionnaire), quality of life (based on EuroQoL health utility measure), and prevalence of moderate-to-severe low back pain and moderate-to-severe shoulder pain. We applied models to a national EHR database (Clinical Practice Research Datalink) to obtain national estimates of each indicator for three successive years.

RESULTS

The optimal models included recorded demographics, deprivation, consultation frequency, analgesic and antidepressant prescriptions, and multimorbidity. Applying models to national EHR, we estimated that 31.9% of adults (≥35 years) presenting with non-inflammatory musculoskeletal disorders in England in 2016/17 experienced high impact chronic pain. Estimated population health levels were worse in women, older aged and those in the most deprived neighbourhoods, and changed little over 3 years.

CONCLUSION

National and subnational estimates for a range of subjective indicators of non-inflammatory musculoskeletal health conditions can be obtained using information from routine electronic health records.

摘要

目的

需要从负担得起且可持续的数据来源中获取更好的指标,以监测肌肉骨骼疾病对人群的负担。我们提出了五项肌肉骨骼健康指标,并评估了常规初级保健电子健康记录(EHR)是否可以估计肌肉骨骼就诊者的人群水平。

方法

我们通过对在 12 个月内因腰痛、肩痛、骨关节炎和其他局部肌肉骨骼疾病就诊于英国普通诊所的≥35 岁成年人进行的当地调查,收集了经过验证的患者报告的疼痛体验、功能和健康状况指标。使用 EHR 数据,我们推导并验证了用于估计五种自我报告指标人群水平的模型:高影响慢性疼痛的患病率、整体肌肉骨骼健康(基于肌肉骨骼健康问卷)、生活质量(基于欧洲五维健康量表)以及中重度腰痛和中重度肩痛的患病率。我们将模型应用于全国性的 EHR 数据库(临床实践研究数据链接),以获得这三个指标在连续三年的全国估计值。

结果

最佳模型包括记录的人口统计学、贫困程度、就诊频率、镇痛药和抗抑郁药处方以及多病症。将模型应用于全国性的 EHR,我们估计 2016/17 年在英格兰就诊的非炎症性肌肉骨骼疾病的≥35 岁成年人中,有 31.9%患有高影响慢性疼痛。估计的人群健康水平在女性、年龄较大和居住在最贫困社区的人群中较差,并且在 3 年内变化不大。

结论

可以使用常规电子健康记录中的信息获得一系列非炎症性肌肉骨骼健康状况的主观指标的国家和次国家估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df32/8487274/c2a1bdf5c5a9/keab109f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验