Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717.
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana 59717.
Toxicol Sci. 2021 Apr 27;181(1):105-114. doi: 10.1093/toxsci/kfab017.
Environmental toxicant exposure contributes to morbidity and mortality of many human diseases. With respect to arsenic, microbially driven chemical transformations dictate its toxicity and mobility in virtually every environment yet studied, so a general hypothesis is that the human gut microbiome determines disease outcome following exposure. However, the complex nature of the gut microbiome and the myriad of potential interactions with human cells/tissues make it challenging to quantify the influence of specific arsenic-active functions-a requisite step in developing effective disease prevention and/or clinical intervention strategies. To control both mammalian and microbial function during toxicant exposure, we genetically defined the gut microbiome of mice using only Escherichia coli strain, AW3110 (▵arsRBC), or the same strain carrying a single genome copy of the Fucus vesiculosus metallothionein gene (AW3110::fmt); a cysteine-rich peptide that complexes with arsenite, facilitating bioaccumulation and reducing its toxic effects. AW3110::fmt bioaccumulated significantly more arsenic and gnotobiotic mice colonized by this strain excreted significantly more arsenic in stool and accumulated significantly less arsenic in organs. Moreover, AW3110::fmt gnotobiotic mice were protected from acute toxicity exposure (20 ppm AsIII) relative to controls. This study demonstrates-in a highly controlled fashion-that a single microbiome function (arsenic bioaccumulation) encoded by a single gene in a single human gut microbiome bacterium significantly alters mammalian host arsenic exposure. The experimental model described herein allows for a highly controlled and directed assessment of microbiome functions, and is useful to quantify the influence of specific microbiome-arsenic interactions that help mitigate human disease.
环境毒物暴露会导致许多人类疾病的发病率和死亡率。就砷而言,微生物驱动的化学转化决定了其在几乎所有已研究环境中的毒性和迁移性,因此一个普遍的假设是人类肠道微生物组决定了暴露后疾病的结果。然而,肠道微生物组的复杂性以及与人类细胞/组织的无数潜在相互作用使得量化特定砷活性功能的影响变得具有挑战性——这是开发有效疾病预防和/或临床干预策略的必要步骤。为了在有毒物质暴露期间控制哺乳动物和微生物的功能,我们仅使用大肠杆菌菌株 AW3110(▵arsRBC)或携带单一基因组拷贝的泡叶藻金属硫蛋白基因(AW3110::fmt)对小鼠的肠道微生物组进行了基因定义;一种富含半胱氨酸的肽与亚砷酸盐结合,促进生物积累并降低其毒性作用。AW3110::fmt 生物积累了更多的砷,并且由该菌株定植的无菌小鼠在粪便中排泄了更多的砷,在器官中积累的砷明显减少。此外,AW3110::fmt 无菌小鼠相对于对照免受急性毒性暴露(20 ppm AsIII)。这项研究以高度可控的方式证明了单个微生物组功能(砷生物积累)由单个人类肠道微生物组细菌中的单个基因编码,可显著改变哺乳动物宿主的砷暴露。本文描述的实验模型允许对微生物组功能进行高度可控和定向评估,并且有助于量化特定微生物组-砷相互作用的影响,这些相互作用有助于减轻人类疾病。