Lieberman S J, Hamasaki T, Satir P
Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461.
Cell Motil Cytoskeleton. 1988;9(1):73-84. doi: 10.1002/cm.970090108.
Structural and behavioral features of intact and permeabilized Paramecium tetraurelia have been defined as a basis for study of Ca2+ control of ciliary reversal. Motion analysis of living paramecia shows that all the cells in a population swim forward with gently curving spirals at speeds averaging 369 +/- 19 microns/second. Ciliary reversal occurs in 10% of the cell population per second. Living paramecia, quick-fixed for scanning electron microscopy (SEM), show metachronal waves and an effective stroke obliquely toward the posterior end of the cell. Upon treatment with Triton X-100, swimming ceases and both scanning and transmission electron microscopy reveal cilia that uniformly project perpendicularly from the cell surface. Thin sections of these cells indicate that the ciliary, cell, and outer alveolar membranes are greatly disrupted or entirely missing and that the cytoplasm is also disrupted. These permeabilized paramecia can be reactivated and are capable of motility and regulation of motility. Motion analysis of cells reactivated with Mg2+ and ATP in low Ca2+ buffer (pCa greater than 7) shows that 71% swim forward in straight or curved paths at speeds averaging 221 +/- 20 microns/second. When these cells are quick-fixed for SEM the metachronal wave patterns of living, forward swimming cells reappear. Motion analysis of permeabilized cells reactivated in high Ca2+ buffers (pCa 5.5) shows that 94% swim backward in tight spirals at a velocity averaging 156 +/- 7 microns/second. SEM reveals a metachronal wave pattern with an effective stroke toward the anterior region. Although the permeabilized cells do not reverse spontaneously, the pCa response is preserved and the Ca2+ switch remains intact. The ciliary axonemes are largely exposed to the external environment. Therefore, the behavioral responses of these permeabilized cells depend on interaction of Ca2+ with molecules that remain bound to the axonemes throughout the extraction and reactivation procedures.
完整的和经通透处理的四膜虫的结构及行为特征已被确定,作为研究钙离子对纤毛反转控制的基础。对活四膜虫的运动分析表明,群体中的所有细胞均以平均速度369±19微米/秒呈轻微弯曲的螺旋状向前游动。每秒有10%的细胞群体发生纤毛反转。用于扫描电子显微镜(SEM)的活四膜虫快速固定标本显示出顺向波以及朝细胞后端倾斜的有效摆动。用Triton X - 100处理后,游动停止,扫描电子显微镜和透射电子显微镜均显示纤毛均匀地垂直于细胞表面伸出。这些细胞的超薄切片表明,纤毛膜、细胞膜和外泡膜受到严重破坏或完全缺失,细胞质也受到破坏。这些经通透处理的四膜虫可以重新激活,并具有运动能力和运动调节能力。在低钙缓冲液(pCa大于7)中用镁离子和ATP重新激活的细胞的运动分析表明,71%的细胞以平均速度221±20微米/秒沿直线或曲线向前游动。当这些细胞用于SEM的快速固定时,活的向前游动细胞的顺向波模式重新出现。在高钙缓冲液(pCa 5.5)中重新激活的经通透处理细胞的运动分析表明,94%的细胞以平均速度156±7微米/秒呈紧密螺旋状向后游动。SEM显示出朝向前端区域的有效摆动的顺向波模式。尽管经通透处理的细胞不会自发反转,但pCa反应得以保留,钙离子开关仍然完好。纤毛轴丝在很大程度上暴露于外部环境。因此,这些经通透处理细胞的行为反应取决于钙离子与在整个提取和重新激活过程中仍与轴丝结合的分子之间的相互作用。