Suppr超能文献

用于跨域JPEG隐写术检测的多视角渐进结构自适应

Multiperspective Progressive Structure Adaptation for JPEG Steganography Detection Across Domains.

作者信息

Jia Ju, Luo Meng, Liu Jinshuo, Ren Weixiang, Wang Lina

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3660-3674. doi: 10.1109/TNNLS.2021.3054045. Epub 2022 Aug 3.

Abstract

The aim of steganography detection is to identify whether the multimedia data contain hidden information. Although many detection algorithms have been presented to solve tasks with inconsistent distributions between the source and target domains, effectively exploiting transferable correlation information across domains remains challenging. As a solution, we present a novel multiperspective progressive structure adaptation (MPSA) scheme based on active progressive learning (APL) for JPEG steganography detection across domains. First, the source and target data originating from unprocessed steganalysis features are clustered together to explore the structures in different domains, where the intradomain and interdomain structures can be captured to provide adequate information for cross-domain steganography detection. Second, the structure vectors containing the global and local modalities are exploited to reduce nonlinear distribution discrepancy based on APL in the latent representation space. In this way, the signal-to-noise ratio (SNR) of a weak stego signal can be improved by selecting suitable objects and adjusting the learning sequence. Third, the structure adaptation across multiple domains is achieved by the constraints for iterative optimization to promote the discrimination and transferability of structure knowledge. In addition, a unified framework for single-source domain adaptation (SSDA) and multiple-source domain adaptation (MSDA) in mismatched steganalysis can enhance the model's capability to avoid a potential negative transfer. Extensive experiments on various benchmark cross-domain steganography detection tasks show the superiority of the proposed approach over the state-of-the-art methods.

摘要

隐写术检测的目的是识别多媒体数据是否包含隐藏信息。尽管已经提出了许多检测算法来解决源域和目标域之间分布不一致的任务,但有效利用跨域的可转移相关信息仍然具有挑战性。作为一种解决方案,我们提出了一种基于主动渐进学习(APL)的新颖的多视角渐进结构自适应(MPSA)方案,用于跨域JPEG隐写术检测。首先,将源自未处理隐写分析特征的源数据和目标数据聚类在一起,以探索不同域中的结构,在其中可以捕获域内和域间结构,为跨域隐写术检测提供足够的信息。其次,利用包含全局和局部模态的结构向量,在潜在表示空间中基于APL减少非线性分布差异。通过这种方式,可以通过选择合适的对象并调整学习序列来提高弱隐写信号的信噪比(SNR)。第三,通过迭代优化的约束实现跨多个域的结构自适应,以促进结构知识的辨别力和可转移性。此外,在不匹配的隐写分析中用于单源域自适应(SSDA)和多源域自适应(MSDA)的统一框架可以增强模型避免潜在负迁移的能力。在各种基准跨域隐写术检测任务上进行的大量实验表明,所提出的方法优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验