Suppr超能文献

多阈值方法在白细胞分类中的应用。

Application of the method of multiple thresholding to white blood cell classification.

作者信息

Gelsema E S, Bao H F, Smeulders A W, den Harink H C

机构信息

Department of Medical Informatics, Free University, Amsterdam, The Netherlands.

出版信息

Comput Biol Med. 1988;18(2):65-74. doi: 10.1016/0010-4825(88)90033-9.

Abstract

A new method of image segmentation based on the principle of multiple grey level thresholding has been applied to a data set consisting of 1149 white blood cells of 13 different, clinically important types, randomly chosen on 20 blood smears from leukemia patients. Classification of these cells on the basis of quantitative measurements in the segmented images yields an accuracy of 82.6%. Some of the erroneous classifications must be attributed to intrinsic problems in the assignment of a priori labels. Correcting for such cases, the performance of the method, as measured on the present data set, increases to 89.8%. This illustrates the practical applicability of the segmentation method in automated white blood cell and possibly other cytological and histological analysis systems.

摘要

一种基于多灰度阈值原理的图像分割新方法已应用于一个数据集,该数据集由从白血病患者的20张血涂片上随机选取的13种临床上重要的不同类型的1149个白细胞组成。根据分割图像中的定量测量对这些细胞进行分类,准确率为82.6%。一些错误分类必须归因于先验标签分配中的固有问题。对这些情况进行校正后,在当前数据集上测量的该方法的性能提高到89.8%。这说明了该分割方法在自动白细胞以及可能的其他细胞学和组织学分析系统中的实际适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验