Gelsema E S, Bao H F, Smeulders A W, den Harink H C
Department of Medical Informatics, Free University, Amsterdam, The Netherlands.
Comput Biol Med. 1988;18(2):65-74. doi: 10.1016/0010-4825(88)90033-9.
A new method of image segmentation based on the principle of multiple grey level thresholding has been applied to a data set consisting of 1149 white blood cells of 13 different, clinically important types, randomly chosen on 20 blood smears from leukemia patients. Classification of these cells on the basis of quantitative measurements in the segmented images yields an accuracy of 82.6%. Some of the erroneous classifications must be attributed to intrinsic problems in the assignment of a priori labels. Correcting for such cases, the performance of the method, as measured on the present data set, increases to 89.8%. This illustrates the practical applicability of the segmentation method in automated white blood cell and possibly other cytological and histological analysis systems.
一种基于多灰度阈值原理的图像分割新方法已应用于一个数据集,该数据集由从白血病患者的20张血涂片上随机选取的13种临床上重要的不同类型的1149个白细胞组成。根据分割图像中的定量测量对这些细胞进行分类,准确率为82.6%。一些错误分类必须归因于先验标签分配中的固有问题。对这些情况进行校正后,在当前数据集上测量的该方法的性能提高到89.8%。这说明了该分割方法在自动白细胞以及可能的其他细胞学和组织学分析系统中的实际适用性。