Suppr超能文献

基于分形数聚类的心室搏动分类器。

Ventricular beat classifier using fractal number clustering.

作者信息

Bakardjian H

机构信息

Institute of Biomedical Engineering, Medical Academy, Sofia, Bulgaria.

出版信息

Med Biol Eng Comput. 1992 Sep;30(5):495-502. doi: 10.1007/BF02457828.

Abstract

A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

摘要

描述了一种两阶段的心室搏动“关联”分类程序。第一阶段根据面积和极性规则将典型搏动与早搏区分开来。在第二阶段,早搏被分类为相邻形状参数值的自组织聚类形式。这种方法避免了使用阈值来区分不同形状的异位搏动,这在临界情况下可能至关重要。一种传统上称为“分形数”的模式形状特征与极性属性相结合,被发现是波形评估的良好标准。这种模式分类方法的另一个优点是其良好的计算效率,这为在实时系统中实现它提供了机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验