Suppr超能文献

使用智能手机应用程序和巴尼斯特脉冲响应模型监测竞技游泳运动员对训练负荷的心率变异性反应。

Monitoring the Heart Rate Variability Responses to Training Loads in Competitive Swimmers Using a Smartphone Application and the Banister Impulse-Response Model.

出版信息

Int J Sports Physiol Perform. 2021 Jun 1;16(6):787-795. doi: 10.1123/ijspp.2020-0201. Epub 2021 Feb 9.

Abstract

PURPOSE

First, to examine whether heart rate variability (HRV) responses can be modeled effectively via the Banister impulse-response model when the session rating of perceived exertion (sRPE) alone, and in combination with subjective well-being measures, are utilized. Second, to describe seasonal HRV responses and their associations with changes in critical speed (CS) in competitive swimmers.

METHODS

A total of 10 highly trained swimmers collected daily 1-minute HRV recordings, sRPE training load, and subjective well-being scores via a novel smartphone application for 15 weeks. The impulse-response model was used to describe chronic root mean square of the successive differences (rMSSD) responses to training, with sRPE and subjective well-being measures used as systems inputs. Changes in CS were obtained from a 3-minute all-out test completed in weeks 1 and 14.

RESULTS

The level of agreement between predicted and actual HRV data was R2 = .66 (.25) when sRPE alone was used. Model fits improved in the range of 4% to 21% when different subjective well-being measures were combined with sRPE, representing trivial-to-moderate improvements. There were no significant differences in weekly group averages of log-transformed (Ln) rMSSD (P = .34) or HRV coefficient of variation of Ln rMSSD (P = .12); however, small-to-large changes (d = 0.21-1.46) were observed in these parameters throughout the season. Large correlations were observed between seasonal changes in HRV measures and CS (changes in averages of Ln rMSSD: r = .51, P = .13; changes in coefficient of variation of Ln rMSSD: r = -.68, P = .03).

CONCLUSION

The impulse-response model and data collected via a novel smartphone application can be used to model HRV responses to swimming training and nontraining-related stressors. Large relationships between seasonal changes in measured HRV parameters and CS provide further evidence for incorporating a HRV-guided training approach.

摘要

目的

首先,研究当仅使用主观感觉用力评分(sRPE)以及结合主观幸福感测量时,Banister 脉冲响应模型是否能有效地对心率变异性(HRV)反应进行建模。其次,描述竞技游泳运动员的季节性 HRV 反应及其与临界速度(CS)变化的关系。

方法

共 10 名高度训练的游泳运动员使用新型智能手机应用程序收集了 15 周内的 1 分钟 HRV 记录、sRPE 训练负荷和主观幸福感评分。使用脉冲响应模型描述慢性均方根的连续差异(rMSSD)对训练的反应,将 sRPE 和主观幸福感测量用作系统输入。通过在第 1 周和第 14 周完成的 3 分钟全力测试获得 CS 的变化。

结果

当仅使用 sRPE 时,预测和实际 HRV 数据之间的一致性水平为 R2=0.66(0.25)。当将不同的主观幸福感测量与 sRPE 结合使用时,模型拟合度提高了 4%至 21%,代表了微不足道到中等的改善。每周组平均对数变换(Ln)rMSSD(P=0.34)或 HRV 的 Ln rMSSD 变异系数(P=0.12)的差异均无统计学意义;然而,整个季节都观察到这些参数的小到大幅度变化(d=0.21-1.46)。HRV 测量和 CS 的季节性变化之间存在大的相关性(Ln rMSSD 平均值变化:r=0.51,P=0.13;Ln rMSSD 变异系数变化:r=-0.68,P=0.03)。

结论

脉冲响应模型和通过新型智能手机应用程序收集的数据可用于对游泳训练和非训练相关应激源的 HRV 反应进行建模。测量的 HRV 参数的季节性变化与 CS 之间的大关系进一步证明了采用 HRV 指导的训练方法的合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验