Hadi M A, Roknuzzaman Md, Nasir M T, Monira U, Naqib S H, Chroneos A, Islam A K M A, Alarco Jose A, Ostrikov Kostya Ken
Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
Sci Rep. 2021 Feb 9;11(1):3410. doi: 10.1038/s41598-021-81346-w.
Recently, a series of high-purity Ti(AlSi)C solid solutions with new compositions (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) have been reported with interesting mechanical properties. Here, we have employed density functional theory for Ti(AlSi)C solid solutions to calculate a wider range of physical properties including structural, electronic, mechanical, thermal and optical. With the increase of x, a decrease of cell parameters is observed. All elastic constants and moduli increase with x. The Fermi level gradually increases, moving towards and past the upper bound of the pseudogap, when the value of x goes from zero to unity, indicating that the structural stability reduces gradually when the amount of Si increases within the Ti(AlSi)C system. In view of Cauchy pressure, Pugh's ratio and Poisson's ratio all compositions of Ti(AlSi)C are brittle in nature. Comparatively, low Debye temperature, lattice thermal conductivity and minimum thermal conductivity of TiAlC favor it to be a thermal barrier coating material. High melting temperatures implies that the solid solutions Ti(AlSi)C may have potential applications in harsh environments. In the visible region (1.8-3.1 eV), the minimum reflectivity of all compositions for both polarizations is above 45%, which makes them potential coating materials for solar heating reduction.
最近,一系列具有新成分(x = 0.0、0.2、0.4、0.6、0.8和1.0)的高纯度Ti(AlSi)C固溶体被报道具有有趣的力学性能。在此,我们采用密度泛函理论对Ti(AlSi)C固溶体进行计算,以获得更广泛的物理性质,包括结构、电子、力学、热学和光学性质。随着x的增加,观察到晶胞参数减小。所有弹性常数和模量都随x增加。当x的值从0增加到1时,费米能级逐渐升高,朝着并越过赝能隙的上限,这表明在Ti(AlSi)C体系中,随着Si含量的增加,结构稳定性逐渐降低。从柯西压力、普格比率和泊松比率来看,Ti(AlSi)C的所有成分本质上都是脆性的。相比之下,TiAlC的低德拜温度、晶格热导率和最小热导率使其有利于成为一种热障涂层材料。高熔点意味着Ti(AlSi)C固溶体在恶劣环境中可能具有潜在应用。在可见光区域(1.8 - 3.1 eV),两种偏振情况下所有成分的最小反射率均高于45%,这使其成为降低太阳能加热的潜在涂层材料。