Sauceda Daniel, Singh Prashant, Arroyave Raymundo
Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA, 50011, USA.
Sci Rep. 2022 Jul 29;12(1):13090. doi: 10.1038/s41598-022-17365-y.
We present a systematic investigation of thermodynamic stability, phase-reaction, and chemical activity of Al containing disordered Ti(Al-Ga)C MAX phases using machine-learning driven high-throughput framework to understand the oxidation resistance behavior with increasing temperature and exposure to static oxygen. The A-site (at Al) disordering in TiAlC MAX (M=Ti, A=Al, X=C) with Ga shows significant change in the chemical activity of Al with increasing temperature and exposure to static oxygen, which is expected to enable surface segregation of Al, thereby, the formation of AlO and improved oxidation resistance. We performed in-depth convex hull analysis of ternary Ti-Al-C, Ti-Ga-C, and Ti-Al-Ga-C based MAX phase, and provide detailed contribution arising from electronic, chemical and vibrational entropies. The thermodynamic analysis shows change in the Gibbs formation enthalpy (ΔG) at higher temperatures, which implies an interplay of temperature-dependent enthalpy and entropic contributions in oxidation resistance Ga doped TiAlC MAX phases. A detailed electronic structure and chemical bonding analysis using crystal orbital Hamilton population method reveal the origin of change in phases stability and in oxidation resistance in disorder Ti(AlGa)C MAX phases. Our electronic structure analysis correlate well with the change in oxidation resistance of Ga doped MAX phases. We believe our study provides a useful guideline to understand to role of alloying on electronic, thermodynamic, and oxidation related mechanisms of bulk MAX phases, which can work as a precursor to understand oxidation behavior of two-dimensional MAX phases, i.e., MXenes (transition metal carbides, carbonitrides and nitrides).
我们使用机器学习驱动的高通量框架,对含铝的无序Ti(Al-Ga)C MAX相的热力学稳定性、相反应和化学活性进行了系统研究,以了解其在温度升高和暴露于静态氧气时的抗氧化行为。在TiAlC MAX(M = Ti,A = Al,X = C)中,A位(Al处)的Ga无序化显示出随着温度升高和暴露于静态氧气,Al的化学活性发生显著变化,这有望使Al发生表面偏析,从而形成AlO并提高抗氧化性。我们对基于三元Ti-Al-C、Ti-Ga-C和Ti-Al-Ga-C的MAX相进行了深入的凸包分析,并提供了电子、化学和振动熵产生的详细贡献。热力学分析表明,在较高温度下吉布斯生成焓(ΔG)发生变化,这意味着在掺杂Ga的TiAlC MAX相的抗氧化性中,温度依赖的焓和熵贡献之间存在相互作用。使用晶体轨道哈密顿布居方法进行的详细电子结构和化学键分析揭示了无序Ti(AlGa)C MAX相中相稳定性和抗氧化性变化的起源。我们的电子结构分析与掺杂Ga的MAX相的抗氧化性变化密切相关。我们相信我们的研究为理解合金化对块状MAX相的电子、热力学和氧化相关机制的作用提供了有用的指导,这可以作为理解二维MAX相即MXenes(过渡金属碳化物、碳氮化物和氮化物)氧化行为的先驱。