Din Anwarud, Li Yongjin, Shah Murad Ali
Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275 China.
School of Mathematical Sciences, Beijing Normal University, Beijing, 100875 China.
J Syst Sci Complex. 2021;34(4):1301-1323. doi: 10.1007/s11424-021-0053-0. Epub 2021 Feb 4.
This paper proposes various stages of the hepatitis B virus (HBV) besides its transmissibility and nonlinear incidence rate to develop an epidemic model. The authors plan the model, and then prove some basic results for the well-posedness in term of boundedness and positivity. Moreover, the authors find the threshold parameter , called the basic/effective reproductive number and carry out local sensitive analysis. Furthermore, the authors examine stability and hence condition for stability in terms of . By using sensitivity analysis, the authors formulate a control problem in order to eradicate HBV from the population and proved that the control problem actually exists. The complete characterization of the optimum system was achieved by using the 4-order Runge-Kutta procedure.
本文除了考虑乙肝病毒(HBV)的传播性和非线性发病率外,还提出了其不同阶段,以建立一个流行病模型。作者构建了该模型,然后从有界性和正性方面证明了一些关于适定性的基本结果。此外,作者找到了阈值参数 ,即基本/有效再生数,并进行了局部敏感性分析。再者,作者研究了稳定性,并由此得出了关于 的稳定性条件。通过敏感性分析,作者制定了一个控制问题,以便从人群中根除乙肝病毒,并证明该控制问题确实存在。通过使用四阶龙格 - 库塔方法实现了最优系统的完整刻画。