Zaman Gul, Han Kang Yong, Jung Il Hyo
Department of Mathematics, Pusan National University, San 30, Geumjeong-Gu, Busan 609-735, South Korea.
Biosystems. 2008 Sep;93(3):240-9. doi: 10.1016/j.biosystems.2008.05.004. Epub 2008 May 23.
Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the susceptible-infected-recovered (SIR) model. In this paper, we describe an SIR epidemic model with three components; S, I and R. We describe our study of stability analysis theory to find the equilibria for the model. Next in order to achieve control of the disease, we consider a control problem relative to the SIR model. A percentage of the susceptible populations is vaccinated in this model. We show that an optimal control exists for the control problem and describe numerical simulations using the Runge-Kutta fourth order procedure. Finally, we describe a real example showing the efficiency of this optimal control.
根据对相关疾病的经历,人群可细分为一组不同的类别。这些模型大多将个体分为易感个体S、感染个体I或康复个体R。这就是所谓的易感-感染-康复(SIR)模型。在本文中,我们描述了一个具有三个组成部分(S、I和R)的SIR流行病模型。我们阐述了对稳定性分析理论的研究,以找到该模型的平衡点。接下来,为了实现疾病控制,我们考虑一个与SIR模型相关的控制问题。在这个模型中,一定比例的易感人群接种了疫苗。我们证明了该控制问题存在最优控制,并描述了使用四阶龙格-库塔方法的数值模拟。最后,我们描述了一个实际例子,展示了这种最优控制的有效性。