Suppr超能文献

一个SIR传染病模型的稳定性分析与最优疫苗接种

Stability analysis and optimal vaccination of an SIR epidemic model.

作者信息

Zaman Gul, Han Kang Yong, Jung Il Hyo

机构信息

Department of Mathematics, Pusan National University, San 30, Geumjeong-Gu, Busan 609-735, South Korea.

出版信息

Biosystems. 2008 Sep;93(3):240-9. doi: 10.1016/j.biosystems.2008.05.004. Epub 2008 May 23.

Abstract

Almost all mathematical models of diseases start from the same basic premise: the population can be subdivided into a set of distinct classes dependent upon experience with respect to the relevant disease. Most of these models classify individuals as either a susceptible individual S, infected individual I or recovered individual R. This is called the susceptible-infected-recovered (SIR) model. In this paper, we describe an SIR epidemic model with three components; S, I and R. We describe our study of stability analysis theory to find the equilibria for the model. Next in order to achieve control of the disease, we consider a control problem relative to the SIR model. A percentage of the susceptible populations is vaccinated in this model. We show that an optimal control exists for the control problem and describe numerical simulations using the Runge-Kutta fourth order procedure. Finally, we describe a real example showing the efficiency of this optimal control.

摘要

几乎所有疾病的数学模型都基于相同的基本前提

根据对相关疾病的经历,人群可细分为一组不同的类别。这些模型大多将个体分为易感个体S、感染个体I或康复个体R。这就是所谓的易感-感染-康复(SIR)模型。在本文中,我们描述了一个具有三个组成部分(S、I和R)的SIR流行病模型。我们阐述了对稳定性分析理论的研究,以找到该模型的平衡点。接下来,为了实现疾病控制,我们考虑一个与SIR模型相关的控制问题。在这个模型中,一定比例的易感人群接种了疫苗。我们证明了该控制问题存在最优控制,并描述了使用四阶龙格-库塔方法的数值模拟。最后,我们描述了一个实际例子,展示了这种最优控制的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验