Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA.
Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, 52242, USA.
AAPS PharmSciTech. 2021 Feb 9;22(2):69. doi: 10.1208/s12249-021-01932-z.
Encapsulating genetic material into biocompatible polymeric microparticles is a means to improving gene transfection while simultaneously decreasing the tendency for inflammatory responses; and can be advantageous in terms of delivering material directly to the lungs via aerosolization for applications such as vaccinations. In this study, we investigated the advantages of using polymeric microparticles carrying the luciferase reporter gene in increasing transfection efficiency in the readily transfectable HEK293 cell line and the difficult to transfect RAW264.7 cell line. The results indicated that there was a limit to the ratio of nitrogen in polyethylenimine (PEI) to phosphate in DNA (N/P ratio) beyond which further increases in transgene expression no longer, or only marginally, occurred. Microparticles encapsulating PEI:DNA nanoplexes induced cellular toxicity in a dose-dependent manner. PEGylation increased transgene expression, likely related to enhanced degradation of particles. Furthermore, intra-tracheal instillation in rats allowed us to investigate the inflammatory response in the lung as a function of PEGylation, porosity, and size. Porosity did not influence cell counts in bronchoalveolar lavage fluid in the absence of PEG, but in particles containing PEG, non-porous particles recruited fewer inflammatory cells than their porous counterparts. Finally, both 1 μm and 10 μm porous PLA-PEG particles recruited more neutrophils than 4 μm particles. Thus, we have shown that PEGylation and lack of porosity are advantageous for faster release of genetic cargo from microparticles and a reduced inflammatory response, respectively.
将遗传物质封装到生物相容性的聚合物微球中是提高基因转染效率的一种方法,同时可以降低炎症反应的趋势;并且通过雾化将材料直接递送到肺部,例如在疫苗接种方面具有优势。在这项研究中,我们研究了使用携带荧光素酶报告基因的聚合物微球在提高易于转染的 HEK293 细胞系和难以转染的 RAW264.7 细胞系中转染效率方面的优势。结果表明,多聚乙二胺(PEI)与 DNA 中磷酸的氮(N/P 比)比值存在一个限制,超过这个比值后,转基因表达的进一步增加不再发生,或者仅略微发生。包封 PEI:DNA 纳米复合物的微球以剂量依赖的方式诱导细胞毒性。PEG 化增加了转基因的表达,可能与颗粒的降解增强有关。此外,通过气管内滴注在大鼠中,我们可以研究 PEG 化、孔隙率和粒径对肺部炎症反应的影响。在没有 PEG 的情况下,孔隙率不会影响支气管肺泡灌洗液中的细胞计数,但在含有 PEG 的颗粒中,无孔颗粒比多孔颗粒募集的炎症细胞更少。最后,1μm 和 10μm 的多孔 PLA-PEG 颗粒比 4μm 的颗粒募集了更多的中性粒细胞。因此,我们已经表明,PEG 化和无孔隙率分别有利于更快地从微球中释放遗传货物和减少炎症反应。