Suppr超能文献

聚乙二醇化磁性 PLGA-PEI 纳米粒子对原代海马神经元的影响:磁转染降低纳米神经毒性并提高转染效率。

Effect of PEGylated Magnetic PLGA-PEI Nanoparticles on Primary Hippocampal Neurons: Reduced Nanoneurotoxicity and Enhanced Transfection Efficiency with Magnetofection.

机构信息

Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience , CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China.

School of Basic Medical Science , Fudan University , 138 Yixueyuan Road , Shanghai 200032 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 16;11(41):38190-38204. doi: 10.1021/acsami.9b15014. Epub 2019 Oct 4.

Abstract

Despite broad application of nanotechnology in neuroscience, the nanoneurotoxicity of magnetic nanoparticles in primary hippocampal neurons remains poorly characterized. In particular, understanding how magnetic nanoparticles perturb neuronal calcium homeostasis is critical when considering magnetic nanoparticles as a nonviral vector for effective gene therapy in neuronal diseases. Here, we address the pressing need to systematically investigate the neurotoxicity of magnetic nanoparticles with different surface charges in primary hippocampal neurons. We found that unlike negative and neutral nanoparticles, positively charged magnetic nanoparticles (magnetic poly(lactic--glycolic acid) (PLGA)-polyethylenimine (PEI) nanoparticles, MNP-PLGA-PEI NPs) rapidly elevated cytoplasmic calcium levels in primary hippocampal neurons, mainly via extracellular calcium influx regulated by voltage-gated calcium channels. We went on to show that this perturbation of intracellular calcium homeostasis elicited serious cytotoxicity in primary hippocampal neurons. However, our next experiment demonstrated that PEGylation on the surface of MNP-PLGA-PEI NPs shielded the surface charge, thereby preventing the perturbation of intracellular calcium homeostasis. That is, PEGylated MNP-PLGA-PEI NPs reduced nanoneurotoxicity. Importantly, biocompatible PEGylated MNP-PLGA-PEI NPs under an external magnetic field enhanced transfection efficiency (>7%) of plasmid DNA encoding GFP in primary hippocampal neurons compared to NPs without external magnetic field mediation. Moreover, under an external magnetic field, this system achieved gene transfection in the hippocampus of the C57 mouse. Overall, this study is the first to successfully employ biocompatible PEGylated MNP-PLGA-PEI NPs for transfection using a magnetofection strategy in primary hippocampal neurons, thereby providing a nanoplatform as a new perspective for treating neuronal diseases or modulating neuron activities.

摘要

尽管纳米技术在神经科学中得到了广泛应用,但磁性纳米颗粒对原代海马神经元的纳米神经毒性仍知之甚少。特别是,当考虑将磁性纳米颗粒作为神经元疾病中有效基因治疗的非病毒载体时,了解磁性纳米颗粒如何扰乱神经元钙稳态至关重要。在这里,我们迫切需要系统地研究具有不同表面电荷的磁性纳米颗粒对原代海马神经元的神经毒性。我们发现,与负电荷和中性纳米颗粒不同,带正电荷的磁性纳米颗粒(磁性聚乳酸-乙醇酸(PLGA)-聚乙烯亚胺(PEI)纳米颗粒,MNP-PLGA-PEI NPs)主要通过电压门控钙通道调节的细胞外钙内流,迅速升高原代海马神经元的细胞质钙水平。我们接着表明,这种细胞内钙稳态的扰动在原代海马神经元中引起了严重的细胞毒性。然而,我们的下一个实验表明,MNP-PLGA-PEI NPs 表面的 PEG 化屏蔽了表面电荷,从而防止了细胞内钙稳态的扰动。也就是说,PEG 化的 MNP-PLGA-PEI NPs 降低了纳米神经毒性。重要的是,在外部磁场下,生物相容性的 PEG 化的 MNP-PLGA-PEI NPs 增强了质粒 DNA (编码 GFP)在原代海马神经元中的转染效率(>7%),而无需外部磁场介导。此外,在外部磁场下,该系统在 C57 小鼠的海马体中实现了基因转染。总的来说,这项研究首次成功地在原代海马神经元中使用生物相容性的 PEG 化的 MNP-PLGA-PEI NPs 进行转染,从而提供了一个纳米平台,为治疗神经元疾病或调节神经元活动提供了一个新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验