Suppr超能文献

半参数线性变换模型在间接观察结局中的应用。

Semiparametric linear transformation models for indirectly observed outcomes.

机构信息

Department of Data Analysis, Ghent University, Ghent, Belgium.

出版信息

Stat Med. 2021 Apr;40(9):2286-2303. doi: 10.1002/sim.8903. Epub 2021 Feb 9.

Abstract

We propose a regression framework to analyze outcomes that are indirectly observed via one or multiple proxies. Semiparametric transformation models, including Cox proportional hazards regression, turn out to be well suited to model the association between the covariates and the unobserved outcome. By coupling this regression model to a semiparametric measurement model, we can estimate these associations without requiring calibration data and without imposing strong functional assumptions on the relationship between the unobserved outcome and its proxy. When multiple proxies are available, we propose a data-driven aggregation resulting in an improved proxy. We empirically validate the proposed methodology in a simulation study, revealing good finite sample properties, especially when multiple proxies are aggregated. The methods are demonstrated on two case studies.

摘要

我们提出了一个回归框架,用于分析通过一个或多个代理间接观察到的结果。半参数变换模型,包括 Cox 比例风险回归,非常适合于模拟协变量与未观察到的结果之间的关系。通过将这个回归模型与半参数测量模型相结合,我们可以在不需要校准数据的情况下,并且不需要对未观察到的结果与其代理之间的关系施加强函数假设的情况下,估计这些关联。当有多个代理可用时,我们提出了一种数据驱动的聚合方法,从而得到一个改进的代理。我们在一个模拟研究中实证验证了所提出的方法,结果表明其具有良好的有限样本性质,特别是在多个代理被聚合的情况下。该方法在两个案例研究中得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验