Department of Data Analysis, Ghent University, Ghent, Belgium.
Stat Med. 2021 Apr;40(9):2286-2303. doi: 10.1002/sim.8903. Epub 2021 Feb 9.
We propose a regression framework to analyze outcomes that are indirectly observed via one or multiple proxies. Semiparametric transformation models, including Cox proportional hazards regression, turn out to be well suited to model the association between the covariates and the unobserved outcome. By coupling this regression model to a semiparametric measurement model, we can estimate these associations without requiring calibration data and without imposing strong functional assumptions on the relationship between the unobserved outcome and its proxy. When multiple proxies are available, we propose a data-driven aggregation resulting in an improved proxy. We empirically validate the proposed methodology in a simulation study, revealing good finite sample properties, especially when multiple proxies are aggregated. The methods are demonstrated on two case studies.
我们提出了一个回归框架,用于分析通过一个或多个代理间接观察到的结果。半参数变换模型,包括 Cox 比例风险回归,非常适合于模拟协变量与未观察到的结果之间的关系。通过将这个回归模型与半参数测量模型相结合,我们可以在不需要校准数据的情况下,并且不需要对未观察到的结果与其代理之间的关系施加强函数假设的情况下,估计这些关联。当有多个代理可用时,我们提出了一种数据驱动的聚合方法,从而得到一个改进的代理。我们在一个模拟研究中实证验证了所提出的方法,结果表明其具有良好的有限样本性质,特别是在多个代理被聚合的情况下。该方法在两个案例研究中得到了验证。