Suppr超能文献

健康衰老和疾病中的剪接改变。

Splicing alterations in healthy aging and disease.

机构信息

The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.

Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.

出版信息

Wiley Interdiscip Rev RNA. 2021 Jul;12(4):e1643. doi: 10.1002/wrna.1643. Epub 2021 Feb 9.

Abstract

Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.

摘要

选择性 RNA 剪接是基因表达的关键步骤,它允许从同一个基因生成具有不同功能的大量信使 RNA 转录本。因此,它是蛋白质组学和功能多样性的丰富来源。选择性 RNA 剪接的改变既发生在健康衰老过程中,也发生在许多人类疾病中,其中一些疾病表现出过早衰老表型或随年龄增长发病率增加。与年龄相关的剪接改变包括与衰老标志相关基因的差异剪接,以及核心剪接体基因和调节性剪接因子水平的变化。在这里,我们回顾了选择性 RNA 剪接及其调节因子与健康生物衰老以及与衰老或衰老样表型相关的疾病之间的已知联系。本文属于以下分类:RNA 在疾病与发育中的作用 > RNA 在疾病中的作用 > RNA 加工 > 剪接调控/选择性剪接。

相似文献

1
Splicing alterations in healthy aging and disease.
Wiley Interdiscip Rev RNA. 2021 Jul;12(4):e1643. doi: 10.1002/wrna.1643. Epub 2021 Feb 9.
2
3
Allosteric regulation of U1 snRNP by splicing regulatory proteins controls spliceosomal assembly.
RNA. 2020 Oct;26(10):1389-1399. doi: 10.1261/rna.075135.120. Epub 2020 Jun 10.
4
Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
Cancer Treat Res. 2013;158:41-94. doi: 10.1007/978-3-642-31659-3_3.
5
Regulation of alternative splicing by the core spliceosomal machinery.
Genes Dev. 2011 Feb 15;25(4):373-84. doi: 10.1101/gad.2004811.
6
Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors.
Eukaryot Cell. 2009 Jul;8(7):990-1000. doi: 10.1128/EC.00075-09. Epub 2009 May 8.
7
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Nature. 2010 Nov 4;468(7320):112-6. doi: 10.1038/nature09470. Epub 2010 Oct 20.
8
Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16.
J Proteomics. 2014 Dec 5;111:184-97. doi: 10.1016/j.jprot.2014.07.029. Epub 2014 Aug 7.
9
RBM25 is a global splicing factor promoting inclusion of alternatively spliced exons and is itself regulated by lysine mono-methylation.
J Biol Chem. 2017 Aug 11;292(32):13381-13390. doi: 10.1074/jbc.M117.784371. Epub 2017 Jun 27.
10
Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis.
Mol Cell. 2015 Jan 8;57(1):23-38. doi: 10.1016/j.molcel.2014.10.029. Epub 2014 Dec 4.

引用本文的文献

1
Dominant-negative isoform of TDP-43 is regulated by ALS-linked RNA-binding proteins.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202406097. Epub 2025 Aug 8.
2
Impact of Acute Endurance Exercise on Alternative Splicing in Skeletal Muscle.
FASEB Bioadv. 2025 May 26;7(8):e70024. doi: 10.1096/fba.2025-00007. eCollection 2025 Aug.
3
Impact of Acute Endurance Exercise on Alternative Splicing in Skeletal Muscle.
bioRxiv. 2025 May 7:2024.11.21.624690. doi: 10.1101/2024.11.21.624690.
4
Alternative Splicing in Tumorigenesis and Cancer Therapy.
Biomolecules. 2025 May 29;15(6):789. doi: 10.3390/biom15060789.
5
Dysregulation of alternative splicing patterns in the ovaries of reproductively aged mice.
bioRxiv. 2025 May 23:2025.05.19.654918. doi: 10.1101/2025.05.19.654918.
6
Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress.
Nat Neurosci. 2025 Jun;28(6):1174-1184. doi: 10.1038/s41593-025-01952-z. Epub 2025 Jun 2.
7
Aging-related alternative splicing drive neoantigen emergence revealed by transcriptome analysis of 1,255 human blood samples.
Front Aging. 2025 May 9;6:1575862. doi: 10.3389/fragi.2025.1575862. eCollection 2025.
8
Splicing accuracy varies across human introns, tissues, age and disease.
Nat Commun. 2025 Jan 27;16(1):1068. doi: 10.1038/s41467-024-55607-x.
9
Mapping proteomic response to salinity stress tolerance in oil crops: Towards enhanced plant resilience.
J Genet Eng Biotechnol. 2024 Dec;22(4):100432. doi: 10.1016/j.jgeb.2024.100432. Epub 2024 Oct 30.

本文引用的文献

1
Global spliceosome activity regulates entry into cellular senescence.
FASEB J. 2021 Jan;35(1):e21204. doi: 10.1096/fj.202000395RR.
2
Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence.
Aging Cell. 2020 Dec;19(12):e13276. doi: 10.1111/acel.13276. Epub 2020 Dec 4.
3
Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis.
Mol Cell. 2020 Nov 19;80(4):648-665.e9. doi: 10.1016/j.molcel.2020.10.019. Epub 2020 Nov 10.
4
PRMT5 inhibition attenuates cartilage degradation by reducing MAPK and NF-κB signaling.
Arthritis Res Ther. 2020 Sep 4;22(1):201. doi: 10.1186/s13075-020-02304-x.
5
Regional Variation of Splicing QTLs in Human Brain.
Am J Hum Genet. 2020 Aug 6;107(2):196-210. doi: 10.1016/j.ajhg.2020.06.002. Epub 2020 Jun 25.
6
SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease.
Acta Neuropathol. 2020 Sep;140(3):317-339. doi: 10.1007/s00401-020-02178-y. Epub 2020 Jun 23.
7
Impaired Regeneration in Dystrophic Muscle-New Target for Therapy.
Front Mol Neurosci. 2020 May 25;13:69. doi: 10.3389/fnmol.2020.00069. eCollection 2020.
8
Coordination of Rheb lysosomal membrane interactions with mTORC1 activation.
F1000Res. 2020 May 27;9. doi: 10.12688/f1000research.22367.1. eCollection 2020.
9
AMP-activated protein kinase regulates alternative pre-mRNA splicing by phosphorylation of SRSF1.
Biochem J. 2020 Jun 26;477(12):2237-2248. doi: 10.1042/BCJ20190894.
10
Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing.
J Am Chem Soc. 2020 May 13;142(19):8706-8727. doi: 10.1021/jacs.0c00768. Epub 2020 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验