Alrajeh Sarah, Naveed Khan Muhammad, Irhash Putra Aidhya, Al-Ugaili Dhafar N, Alobaidi Khalid H, Al Dossary Othman, Al-Obaidi Jameel R, Jamaludin Azi Azeyanty, Allawi Mohammed Yahya, Al-Taie Bilal Salim, Abdul Rahman Norafizah, Rahmad Norasfaliza
Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
Department of Molecular and Medical Biotechnology, College of Biotechnology, AL-Nahrain University, Jadriya, Baghdad, Iraq.
J Genet Eng Biotechnol. 2024 Dec;22(4):100432. doi: 10.1016/j.jgeb.2024.100432. Epub 2024 Oct 30.
Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-salinity regions. Our content might be read more properly: This review assembles current knowledge on protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research, featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-edge proteomic approaches - such as 2D-DIGE, IF-MS/MS, and iTRAQ - have been required to reveal protein expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in protein abundance associated with important physiological activities including antioxidant defence, stress-related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels (SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins (HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify potential markers for crop improvement.
暴露于盐环境中会显著阻碍油料作物的生长和生产力,对其营养品质和生物燃料生产适宜性产生有害影响。这构成了一项严峻挑战,因为了解作物的耐盐机制是提高其在沿海和高盐地区表现的关键。我们的内容或许可以更恰当地表述为:本综述汇集了目前关于油料作物中与耐盐性相关的蛋白质水平变化的知识。通过对蛋白质组学研究的广泛分析,这里重点介绍了对盐胁迫作出反应的关键基因和细胞途径。文献表明,诸如二维差异凝胶电泳(2D-DIGE)、免疫沉淀-质谱/质谱(IF-MS/MS)和串联质量标签(iTRAQ)等前沿蛋白质组学方法对于揭示盐胁迫条件下油料作物中的蛋白质表达模式是必不可少的。这些研究一致发现,与重要生理活动相关的蛋白质丰度发生了显著变化,这些生理活动包括抗氧化防御、应激相关信号通路、离子稳态和渗透调节。值得注意的是,离子通道(SOS1、NHX)、渗透保护剂(脯氨酸、甘氨酸甜菜碱)、抗氧化酶(超氧化物歧化酶、过氧化氢酶)和应激相关蛋白(热休克蛋白、胚胎发育晚期丰富蛋白)等蛋白质在维持细胞平衡和减轻氧化应激方面发挥着核心作用。这些发现突显了控制油料作物耐盐性的复杂调控网络。这种蛋白质组学信息的应用可为提高耐盐性的育种和基因工程策略提供参考。未来的研究应旨在整合多种组学数据,以全面了解盐胁迫反应并确定作物改良的潜在标记。