Guschlbauer Jannick, Sundermeyer Jörg
Fachbereich Chemie and Materials Science Center, Philipps-Universität, Hans-Meerwein-Str. 4, 35032, Marburg, Germany.
ChemistryOpen. 2021 Feb;10(2):92-96. doi: 10.1002/open.202000346.
This minireview describes two strategically different and unexplored approaches to use ionic liquids (IL) containing weakly solvated and highly reactive chalcogenide anions [E-SiMe ] and [E-H] of the heavy chalcogens (E=S, Se, Te) in materials synthesis near room temperature. The first strategy involves the synthesis of unprecedented trimethylsilyl chalcogenido metalates Cat [M(E-SiMe ) ] (Cat=organic IL cation) of main group and transition metals (M=Ga, In, Sn, Zn, Cu, Ag, Au). These fully characterized homoleptic metalates serve as thermally metastable precursors in low-temperature syntheses of binary, ternary and even quaternary chalcogenide materials such as CIGS and CZTS relevant for semiconductor and photovoltaics (PV) applications. Furthermore, thermally and protolytically metastable coinage metalates Cat [M(ESiMe ) ] (M=Cu, Ag, Au; E=S, Se) are accessible. Finally, the use of precursors BMPyr[E-SiMe ] (E=Se,Te; BMPyr=1-butyl-1-methylpyrrolidinium) as sources of activated selenium and tellurium in the synthesis of high-grade thermoelectric nanoparticles Bi Se and Bi Te is shortly highlighted. The second synthesis strategy involves the metalation of ionic liquids Cat[S-H] and Cat[Se-H] by protolytically highly active metal alkyls or amides R M. This rather general approach towards unknown chalcogenido metalates Cat [R M(E)] (E=S, Se) will be demonstrated in a research paper following this short review head-to-tail.
本综述介绍了两种在室温附近的材料合成中使用离子液体(IL)的策略性不同且未被探索的方法,这些离子液体含有重硫族元素(E = S、Se、Te)的弱溶剂化且高反应性的硫族阴离子[E-SiMe₃]和[E-H]。第一种策略涉及合成主族和过渡金属(M = Ga、In、Sn、Zn、Cu、Ag、Au)的前所未有的三甲基硅基硫族金属酸盐Cat[M(E-SiMe₃)₄](Cat = 有机离子液体阳离子)。这些经过充分表征的均配金属酸盐在二元、三元甚至四元硫族化合物材料(如与半导体和光伏(PV)应用相关的CIGS和CZTS)的低温合成中用作热亚稳前体。此外,还可获得热和质子解亚稳的铜族金属酸盐Cat[M(E-SiMe₃)₄](M = Cu、Ag、Au;E = S、Se)。最后,简要强调了在合成高级热电纳米颗粒Bi₂Se₃和Bi₂Te₃中使用前体BMPyr[E-SiMe₃](E = Se、Te;BMPyr = 1-丁基-1-甲基吡咯烷鎓)作为活性硒和碲的来源。第二种合成策略涉及通过质子解活性高的金属烷基化合物或酰胺RₓM对离子液体Cat[S-H]和Cat[Se-H]进行金属化。这种制备未知硫族金属酸盐Cat[RₓM(E)](E = S、Se)的相当通用的方法将在本简短综述之后的一篇研究论文中从头到尾进行展示。