Suppr超能文献

糖尿病管理中人工智能的民族种族公平需求:综述与建议。

The Need for Ethnoracial Equity in Artificial Intelligence for Diabetes Management: Review and Recommendations.

机构信息

Centre for Global eHealth Innovation, Techna Institute, University Health Network, Toronto, ON, Canada.

Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

出版信息

J Med Internet Res. 2021 Feb 10;23(2):e22320. doi: 10.2196/22320.

Abstract

There is clear evidence to suggest that diabetes does not affect all populations equally. Among adults living with diabetes, those from ethnoracial minority communities-foreign-born, immigrant, refugee, and culturally marginalized-are at increased risk of poor health outcomes. Artificial intelligence (AI) is actively being researched as a means of improving diabetes management and care; however, several factors may predispose AI to ethnoracial bias. To better understand whether diabetes AI interventions are being designed in an ethnoracially equitable manner, we conducted a secondary analysis of 141 articles included in a 2018 review by Contreras and Vehi entitled "Artificial Intelligence for Diabetes Management and Decision Support: Literature Review." Two members of our research team independently reviewed each article and selected those reporting ethnoracial data for further analysis. Only 10 articles (7.1%) were ultimately selected for secondary analysis in our case study. Of the 131 excluded articles, 118 (90.1%) failed to mention participants' ethnic or racial backgrounds. The included articles reported ethnoracial data under various categories, including race (n=6), ethnicity (n=2), race/ethnicity (n=3), and percentage of Caucasian participants (n=1). Among articles specifically reporting race, the average distribution was 69.5% White, 17.1% Black, and 3.7% Asian. Only 2 articles reported inclusion of Native American participants. Given the clear ethnic and racial differences in diabetes biomarkers, prevalence, and outcomes, the inclusion of ethnoracial training data is likely to improve the accuracy of predictive models. Such considerations are imperative in AI-based tools, which are predisposed to negative biases due to their black-box nature and proneness to distributional shift. Based on our findings, we propose a short questionnaire to assess ethnoracial equity in research describing AI-based diabetes interventions. At this unprecedented time in history, AI can either mitigate or exacerbate disparities in health care. Future accounts of the infancy of diabetes AI must reflect our early and decisive action to confront ethnoracial inequities before they are coded into our systems and perpetuate the very biases we aim to eliminate. If we take deliberate and meaningful steps now toward training our algorithms to be ethnoracially inclusive, we can architect innovations in diabetes care that are bound by the diverse fabric of our society.

摘要

有明确的证据表明,糖尿病并非对所有人群的影响都是均等的。在患有糖尿病的成年人中,来自族裔少数群体——移民、难民和文化边缘群体——的人更有可能出现不良健康结果。人工智能(AI)正在被积极研究,以作为改善糖尿病管理和护理的一种手段;然而,有几个因素可能使 AI 容易产生族裔偏见。为了更好地了解糖尿病 AI 干预措施是否以族裔公平的方式进行设计,我们对 Contreras 和 Vehi 于 2018 年发表的题为“用于糖尿病管理和决策支持的人工智能:文献综述”的综述中包含的 141 篇文章进行了二次分析。我们研究团队的两名成员独立审查了每篇文章,并选择了报告族裔数据的文章进行进一步分析。在我们的案例研究中,最终只有 10 篇文章(7.1%)被选入二次分析。在被排除的 131 篇文章中,有 118 篇(90.1%)没有提到参与者的族裔或种族背景。包含的文章在各种类别下报告了族裔数据,包括种族(n=6)、族裔(n=2)、种族/族裔(n=3)和白种人参与者的百分比(n=1)。在专门报告种族的文章中,平均分布为 69.5%的白种人、17.1%的黑种人、3.7%的亚洲人。只有 2 篇文章报告了包括美洲原住民参与者。鉴于糖尿病生物标志物、患病率和结果存在明显的族裔和种族差异,纳入族裔培训数据可能会提高预测模型的准确性。在基于 AI 的工具中,由于其黑盒性质和容易发生分布转移,因此必须考虑这些因素,因为这些工具容易产生负面偏见。根据我们的发现,我们提出了一个简短的问卷,以评估描述基于 AI 的糖尿病干预措施的研究中的族裔公平性。在历史上前所未有的这个时刻,人工智能既可以减轻也可以加剧医疗保健方面的差距。未来对糖尿病人工智能的早期描述必须反映出我们在将族裔不平等编入我们的系统之前,及早果断地采取行动来应对这些不平等,以免这些不平等被我们的系统所延续,从而消除我们试图消除的偏见。如果我们现在就采取深思熟虑和有意义的步骤来训练我们的算法,使其具有族裔包容性,我们就可以在糖尿病护理方面进行创新,这些创新受到我们社会多元化的限制。

相似文献

2
4
Bridging Health Disparities in the Data-Driven World of Artificial Intelligence: A Narrative Review.
J Racial Ethn Health Disparities. 2024 Jul 2. doi: 10.1007/s40615-024-02057-2.
5
Assessing and Mitigating Bias in Medical Artificial Intelligence: The Effects of Race and Ethnicity on a Deep Learning Model for ECG Analysis.
Circ Arrhythm Electrophysiol. 2020 Mar;13(3):e007988. doi: 10.1161/CIRCEP.119.007988. Epub 2020 Feb 16.
6
Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here.
Popul Health Manag. 2019 Jun;22(3):229-242. doi: 10.1089/pop.2018.0129. Epub 2018 Oct 2.
8
A Novel Use of Artificial Intelligence to Examine Diversity and Hospital Performance.
J Surg Res. 2021 Apr;260:377-382. doi: 10.1016/j.jss.2020.07.081. Epub 2020 Oct 21.
9
Implications of Bias in Artificial Intelligence: Considerations for Cardiovascular Imaging.
Curr Atheroscler Rep. 2024 Apr;26(4):91-102. doi: 10.1007/s11883-024-01190-x. Epub 2024 Feb 16.
10
Fragmentation or Diversification? Ethnoracial Change and the Social and Economic Heterogeneity of Places.
Demography. 2019 Dec;56(6):2193-2227. doi: 10.1007/s13524-019-00835-w.

引用本文的文献

2
A global call to action: strengthening strategies to combat dysglycemia and improve public health outcomes.
Front Public Health. 2025 May 30;13:1597128. doi: 10.3389/fpubh.2025.1597128. eCollection 2025.
3
The Algorithmic Divide: A Systematic Review on AI-Driven Racial Disparities in Healthcare.
J Racial Ethn Health Disparities. 2024 Dec 18. doi: 10.1007/s40615-024-02237-0.
5
Bridging Health Disparities in the Data-Driven World of Artificial Intelligence: A Narrative Review.
J Racial Ethn Health Disparities. 2024 Jul 2. doi: 10.1007/s40615-024-02057-2.
6
Potential of artificial intelligence in injury prevention research and practice.
Inj Prev. 2024 Mar 20;30(2):89-91. doi: 10.1136/ip-2023-045203.
7
Mapping gender and geographic diversity in artificial intelligence research: Editor representation in leading computer science journals.
Acta Radiol Open. 2023 Nov 28;12(10):20584601231213740. doi: 10.1177/20584601231213740. eCollection 2023 Oct.
8
Health Equity in Clinical Research Informatics.
Yearb Med Inform. 2023 Aug;32(1):138-145. doi: 10.1055/s-0043-1768720. Epub 2023 Jul 6.
10
Consumer Health Informatics for Racial and Ethnic Minoritized Communities: Minor Progress, Major Opportunities.
Yearb Med Inform. 2022 Aug;31(1):167-172. doi: 10.1055/s-0042-1742520. Epub 2022 Dec 4.

本文引用的文献

1
Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms.
N Engl J Med. 2020 Aug 27;383(9):874-882. doi: 10.1056/NEJMms2004740. Epub 2020 Jun 17.
2
Type 1 diabetes onset triggered by COVID-19.
Acta Diabetol. 2020 Oct;57(10):1265-1266. doi: 10.1007/s00592-020-01570-0. Epub 2020 Jul 11.
4
Universal Drug Coverage and Socioeconomic Disparities in Health Care Costs Among Persons With Diabetes.
Diabetes Care. 2020 Sep;43(9):2098-2105. doi: 10.2337/dc19-1536. Epub 2020 Jul 8.
6
New-Onset Diabetes in Covid-19.
N Engl J Med. 2020 Aug 20;383(8):789-790. doi: 10.1056/NEJMc2018688. Epub 2020 Jun 12.
7
Artificial Intelligence in Decision Support Systems for Type 1 Diabetes.
Sensors (Basel). 2020 Jun 5;20(11):3214. doi: 10.3390/s20113214.
9
Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus.
Diabetes Res Clin Pract. 2020 Jun;164:108166. doi: 10.1016/j.diabres.2020.108166. Epub 2020 Apr 24.
10
Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations.
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):303-310. doi: 10.1016/j.dsx.2020.04.004. Epub 2020 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验