文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

呼吁算法公平性以减轻在口腔正畸学和颅面健康中使用的人工智能模型中种族偏见的放大。

Call for algorithmic fairness to mitigate amplification of racial biases in artificial intelligence models used in orthodontics and craniofacial health.

机构信息

Department of Orthodontics, University of Illinois Chicago College of Dentistry, Chicago, Illinois, USA.

Health Care Administration Program, School of Business, Rhode Island College, Providence, Rhode Island, USA.

出版信息

Orthod Craniofac Res. 2023 Dec;26 Suppl 1:124-130. doi: 10.1111/ocr.12721. Epub 2023 Oct 17.


DOI:10.1111/ocr.12721
PMID:37846615
Abstract

Machine Learning (ML), a subfield of Artificial Intelligence (AI), is being increasingly used in Orthodontics and craniofacial health for predicting clinical outcomes. Current ML/AI models are prone to accentuate racial disparities. The objective of this narrative review is to provide an overview of how AI/ML models perpetuate racial biases and how we can mitigate this situation. A narrative review of articles published in the medical literature on racial biases and the use of AI/ML models was undertaken. Current AI/ML models are built on homogenous clinical datasets that have a gross underrepresentation of historically disadvantages demographic groups, especially the ethno-racial minorities. The consequence of such AI/ML models is that they perform poorly when deployed on ethno-racial minorities thus further amplifying racial biases. Healthcare providers, policymakers, AI developers and all stakeholders should pay close attention to various steps in the pipeline of building AI/ML models and every effort must be made to establish algorithmic fairness to redress inequities.

摘要

机器学习(ML)是人工智能(AI)的一个分支,越来越多地用于正畸和颅面健康,以预测临床结果。目前的 ML/AI 模型容易加剧种族差异。本叙述性综述的目的是概述 AI/ML 模型如何延续种族偏见,以及我们如何减轻这种情况。对医学文献中关于种族偏见和使用 AI/ML 模型的文章进行了叙述性回顾。目前的 AI/ML 模型是建立在同质的临床数据集上的,这些数据集严重低估了历史上处于不利地位的人口群体,尤其是少数族裔。这种 AI/ML 模型的后果是,它们在部署到少数族裔时表现不佳,从而进一步放大了种族偏见。医疗保健提供者、政策制定者、AI 开发者和所有利益相关者都应该密切关注构建 AI/ML 模型的各个步骤,并尽一切努力建立算法公平性,以纠正不平等现象。

相似文献

[1]
Call for algorithmic fairness to mitigate amplification of racial biases in artificial intelligence models used in orthodontics and craniofacial health.

Orthod Craniofac Res. 2023-12

[2]
Fairness of artificial intelligence in healthcare: review and recommendations.

Jpn J Radiol. 2024-1

[3]
Bridging Health Disparities in the Data-Driven World of Artificial Intelligence: A Narrative Review.

J Racial Ethn Health Disparities. 2024-7-2

[4]
The Need for Ethnoracial Equity in Artificial Intelligence for Diabetes Management: Review and Recommendations.

J Med Internet Res. 2021-2-10

[5]
Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models.

J Am Med Inform Assoc. 2024-4-19

[6]
A survey of recent methods for addressing AI fairness and bias in biomedicine.

J Biomed Inform. 2024-6

[7]
Human-Centered Design to Address Biases in Artificial Intelligence.

J Med Internet Res. 2023-3-24

[8]
A scoping review of fair machine learning techniques when using real-world data.

J Biomed Inform. 2024-3

[9]
Algorithmic fairness in artificial intelligence for medicine and healthcare.

Nat Biomed Eng. 2023-6

[10]
A roadmap to artificial intelligence (AI): Methods for designing and building AI ready data to promote fairness.

J Biomed Inform. 2024-6

引用本文的文献

[1]
Potential source of bias in AI models: lactate measurement in the ICU in sepsis patients as a template.

Front Med (Lausanne). 2025-7-9

[2]
Orthodontic Educational Landscape in the Contemporary Context: Insights from Educators.

Semin Orthod. 2024-9

[3]
Integration of artificial intelligence in orthodontic imaging: A bibliometric analysis of research trends and applications.

Imaging Sci Dent. 2025-6

[4]
AI Efficiency in Dentistry: Comparing Artificial Intelligence Systems with Human Practitioners in Assessing Several Periodontal Parameters.

Medicina (Kaunas). 2025-3-23

[5]
The Transformative Role of Artificial Intelligence in Dentistry: A Comprehensive Overview Part 2: The Promise and Perils, and the International Dental Federation Communique.

Int Dent J. 2025-4

[6]
From palm to practice: prescription digital therapeutics for mental and brain health at the National Institutes of Health.

Front Psychiatry. 2024-9-10

[7]
Artificial intelligence-based automated preprocessing and classification of impacted maxillary canines in panoramic radiographs.

Dentomaxillofac Radiol. 2024-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索