Department of Orthodontics, University of Illinois Chicago College of Dentistry, Chicago, Illinois, USA.
Health Care Administration Program, School of Business, Rhode Island College, Providence, Rhode Island, USA.
Orthod Craniofac Res. 2023 Dec;26 Suppl 1:124-130. doi: 10.1111/ocr.12721. Epub 2023 Oct 17.
Machine Learning (ML), a subfield of Artificial Intelligence (AI), is being increasingly used in Orthodontics and craniofacial health for predicting clinical outcomes. Current ML/AI models are prone to accentuate racial disparities. The objective of this narrative review is to provide an overview of how AI/ML models perpetuate racial biases and how we can mitigate this situation. A narrative review of articles published in the medical literature on racial biases and the use of AI/ML models was undertaken. Current AI/ML models are built on homogenous clinical datasets that have a gross underrepresentation of historically disadvantages demographic groups, especially the ethno-racial minorities. The consequence of such AI/ML models is that they perform poorly when deployed on ethno-racial minorities thus further amplifying racial biases. Healthcare providers, policymakers, AI developers and all stakeholders should pay close attention to various steps in the pipeline of building AI/ML models and every effort must be made to establish algorithmic fairness to redress inequities.
机器学习(ML)是人工智能(AI)的一个分支,越来越多地用于正畸和颅面健康,以预测临床结果。目前的 ML/AI 模型容易加剧种族差异。本叙述性综述的目的是概述 AI/ML 模型如何延续种族偏见,以及我们如何减轻这种情况。对医学文献中关于种族偏见和使用 AI/ML 模型的文章进行了叙述性回顾。目前的 AI/ML 模型是建立在同质的临床数据集上的,这些数据集严重低估了历史上处于不利地位的人口群体,尤其是少数族裔。这种 AI/ML 模型的后果是,它们在部署到少数族裔时表现不佳,从而进一步放大了种族偏见。医疗保健提供者、政策制定者、AI 开发者和所有利益相关者都应该密切关注构建 AI/ML 模型的各个步骤,并尽一切努力建立算法公平性,以纠正不平等现象。
Jpn J Radiol. 2024-1
J Racial Ethn Health Disparities. 2024-7-2
J Med Internet Res. 2021-2-10
J Biomed Inform. 2024-6
J Med Internet Res. 2023-3-24
J Biomed Inform. 2024-3
Nat Biomed Eng. 2023-6
Front Med (Lausanne). 2025-7-9
Dentomaxillofac Radiol. 2024-3-25