Suppr超能文献

Effects of metabolic inhibition on ion transport by dog bronchial epithelium.

作者信息

Stutts M J, Gatzy J T, Boucher R C

机构信息

Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27514.

出版信息

J Appl Physiol (1985). 1988 Jan;64(1):253-8. doi: 10.1152/jappl.1988.64.1.253.

Abstract

Mammalian bronchial epithelium absorbs Na+ under basal conditions, but Cl- secretion can be induced. We studied the effects of several modes of metabolic inhibition on the bioelectric properties and solute permeability of dog bronchial epithelium mounted in Ussing chambers. Net Na+ absorption and short-circuit current were inhibited by approximately 75% by hypoxia or by 10(-3) M NaCN. The reduced net Na+ absorption was characterized by a decrease in absorptive flux and an increase in backflux. The latter change was proportional to an increase in permeability to [14C]mannitol, implying that solute flow through a paracellular shunt was increased. In contrast, the reduction of conductance expected from exposure to amiloride (0.94 +/- 0.15 ms/cm2 or 12%) was abolished by NaCN pretreatment. Metabolic inhibition also decreased epithelial conductance and unidirectional Cl- fluxes by approximately 25%. NaCN rapidly and reversibly inhibited the hyperpolarization of potential difference (PD) induced by low luminal bath [Cl-]. This effect was mimicked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid. Because the transepithelial Cl- diffusion PD reflects, in part, the depolarization of the Cl- -conductive apical cell membrane, metabolic inhibition appears to affect this path. We conclude that metabolic inhibition not only decreased net ion transport by dog bronchial epithelium but also inhibited cellular Na+- and Cl- -conductive pathways and increased paracellular permeability.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验