Chen Junyang, Gong Zhiguo, Wang Wei, Liu Weiwen, Dong Xiao
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3765-3777. doi: 10.1109/TNNLS.2021.3054422. Epub 2022 Aug 3.
Network representation learning (NRL) has shown its effectiveness in many tasks, such as vertex classification, link prediction, and community detection. In many applications, vertices of social networks contain textual information, e.g., citation networks, which form a text corpus and can be applied to the typical representation learning methods. The global context in the text corpus can be utilized by topic models to discover the topic structures of vertices. Nevertheless, most existing NRL approaches focus on learning representations from the local neighbors of vertices and ignore the global structure of the associated textual information in networks. In this article, we propose a unified model based on matrix factorization (MF), named collaborative representation learning (CRL), which: 1) considers complementary global and local information simultaneously and 2) models topics and learns network embeddings collaboratively. Moreover, we incorporate the Fletcher-Reeves (FR) MF, a conjugate gradient method, to optimize the embedding matrices in an alternative mode. We call this parameter learning method as AFR in our work that can achieve convergence after a few numbers of iterations. Also, by evaluating CRL on topic coherence and vertex classification using several real-world data sets, our experimental study shows that this collaborative model not only can improve the performance of topic discovery over the baseline topic models but also can learn better network representations than the state-of-the-art context-aware NRL models.
网络表示学习(NRL)在许多任务中都显示出了有效性,如顶点分类、链接预测和社区检测。在许多应用中,社交网络的顶点包含文本信息,例如引文网络,这些文本信息构成了一个文本语料库,并且可以应用于典型的表示学习方法。主题模型可以利用文本语料库中的全局上下文来发现顶点的主题结构。然而,大多数现有的NRL方法都专注于从顶点的局部邻居学习表示,而忽略了网络中相关文本信息的全局结构。在本文中,我们提出了一种基于矩阵分解(MF)的统一模型,称为协同表示学习(CRL),该模型:1)同时考虑互补的全局和局部信息;2)协同建模主题并学习网络嵌入。此外,我们采用共轭梯度法Fletcher-Reeves(FR)MF以交替模式优化嵌入矩阵。在我们的工作中,我们将这种参数学习方法称为AFR,它可以在几次迭代后实现收敛。此外,通过使用几个真实世界的数据集对CRL进行主题连贯性和顶点分类评估,我们的实验研究表明,这种协同模型不仅可以在基线主题模型上提高主题发现的性能,而且可以比当前最先进的上下文感知NRL模型学习到更好的网络表示。