Suppr超能文献

miRNA 归一化使能够联合分析几个数据集,以提高灵敏度,并揭示乳腺癌中差异表达的新 miRNA。

miRNA normalization enables joint analysis of several datasets to increase sensitivity and to reveal novel miRNAs differentially expressed in breast cancer.

机构信息

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

Department of Computer Science, Interdisciplinary Center, Herzliya, Israel.

出版信息

PLoS Comput Biol. 2021 Feb 10;17(2):e1008608. doi: 10.1371/journal.pcbi.1008608. eCollection 2021 Feb.

Abstract

Different miRNA profiling protocols and technologies introduce differences in the resulting quantitative expression profiles. These include differences in the presence (and measurability) of certain miRNAs. We present and examine a method based on quantile normalization, Adjusted Quantile Normalization (AQuN), to combine miRNA expression data from multiple studies in breast cancer into a single joint dataset for integrative analysis. By pooling multiple datasets, we obtain increased statistical power, surfacing patterns that do not emerge as statistically significant when separately analyzing these datasets. To merge several datasets, as we do here, one needs to overcome both technical and batch differences between these datasets. We compare several approaches for merging and jointly analyzing miRNA datasets. We investigate the statistical confidence for known results and highlight potential new findings that resulted from the joint analysis using AQuN. In particular, we detect several miRNAs to be differentially expressed in estrogen receptor (ER) positive versus ER negative samples. In addition, we identify new potential biomarkers and therapeutic targets for both clinical groups. As a specific example, using the AQuN-derived dataset we detect hsa-miR-193b-5p to have a statistically significant over-expression in the ER positive group, a phenomenon that was not previously reported. Furthermore, as demonstrated by functional assays in breast cancer cell lines, overexpression of hsa-miR-193b-5p in breast cancer cell lines resulted in decreased cell viability in addition to inducing apoptosis. Together, these observations suggest a novel functional role for this miRNA in breast cancer. Packages implementing AQuN are provided for Python and Matlab: https://github.com/YakhiniGroup/PyAQN.

摘要

不同的 miRNA 分析方案和技术会导致定量表达谱的结果存在差异。这些差异包括某些 miRNA 的存在(和可测性)。我们提出并研究了一种基于分位数归一化的方法,即调整分位数归一化(AQuN),将乳腺癌中多个研究的 miRNA 表达数据组合到一个联合数据集,以便进行综合分析。通过汇集多个数据集,我们获得了更高的统计效力,揭示了单独分析这些数据集时不会出现的模式。为了合并多个数据集,就像我们在这里所做的那样,需要克服这些数据集之间的技术和批次差异。我们比较了几种合并和联合分析 miRNA 数据集的方法。我们研究了已知结果的统计可信度,并强调了使用 AQuN 进行联合分析所产生的潜在新发现。特别是,我们检测到一些 miRNA 在雌激素受体(ER)阳性与 ER 阴性样本中表达存在差异。此外,我们为这两个临床组确定了新的潜在生物标志物和治疗靶点。作为一个具体的例子,使用 AQuN 衍生的数据集,我们检测到 hsa-miR-193b-5p 在 ER 阳性组中的表达显著上调,这一现象以前没有报道过。此外,正如在乳腺癌细胞系中的功能测定所证明的那样,hsa-miR-193b-5p 在乳腺癌细胞系中的过表达除了诱导细胞凋亡外,还导致细胞活力降低。这些观察结果共同表明,这种 miRNA 在乳腺癌中具有新的功能作用。用于 Python 和 Matlab 的 AQuN 实现包:https://github.com/YakhiniGroup/PyAQN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa8f/7901788/dbce8d32f21e/pcbi.1008608.g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验