Suppr超能文献

耳石运动的虚拟模拟在良性阵发性位置性眩晕的诊断和治疗中的应用。

Virtual simulation of otolith movement for the diagnosis and treatment of benign paroxysmal positional vertigo.

机构信息

Department of College of Information Engineering, Yangzhou University, Yangzhou, Jiangsu, China.

Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.

出版信息

Biomed Tech (Berl). 2021 Feb 11;66(4):387-393. doi: 10.1515/bmt-2020-0278. Print 2021 Aug 26.

Abstract

Benign paroxysmal positional vertigo (BPPV) is a clinical condition. The existing diagnostic methods cannot determine the specific location of otolith on the short or long brachial sides. Thus, visual and quantitative evaluation of the existing clinical standard diagnostic modality Dix-Hallpike test is needed to improve medical efficiency. Our goal was to develop a real-time virtual simulation system to assess a BPPV treatment manipulation. In this study, we used the proposed simulation system to observe otolith movement during a posterior semicircular canal BPPV diagnostic test, and to analyze the diagnostic mechanisms and strategies. Through visual cluster analysis of otolith position and analysis of otolith movement time in the standard Dix-Hallpike test, we can find that the positions of otoliths are relatively scattered, especially on the -axis (  = 10.67 ± 3.98), and the fall time of otoliths at different positions has relatively large changes (  = 22.21 ± 1.40). But in the modified experiment  = 4.93 ± 0.32 and  = 26.21 ± 0.28. The experimental results show that the simulation system could track the state and the movement of otolith in real-time, which is of great significance for understanding the diagnostic mechanisms of BPPV evaluations and improving the diagnostic method.

摘要

良性阵发性位置性眩晕(BPPV)是一种临床病症。现有的诊断方法无法确定耳石在短臂或长臂侧的确切位置。因此,需要对现有的临床标准诊断方法 Dix-Hallpike 试验进行视觉和定量评估,以提高医疗效率。我们的目标是开发一种实时虚拟模拟系统,以评估 BPPV 治疗操作。在这项研究中,我们使用提出的模拟系统来观察后半规管 BPPV 诊断试验中耳石的运动,并分析诊断机制和策略。通过对耳石位置的视觉聚类分析和标准 Dix-Hallpike 试验中耳石运动时间的分析,我们可以发现耳石的位置相对分散,尤其是在 x 轴上( = 10.67 ± 3.98),并且不同位置耳石的掉落时间变化相对较大( = 22.21 ± 1.40)。但是在改良实验中, = 4.93 ± 0.32, = 26.21 ± 0.28。实验结果表明,该模拟系统可以实时跟踪耳石的状态和运动,这对于理解 BPPV 评估的诊断机制和改进诊断方法具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验