Suppr超能文献

在显著的聚合罕见变异检测中识别有影响力的变异体。

Identification of Influential Variants in Significant Aggregate Rare Variant Tests.

作者信息

Blumhagen Rachel Z, Schwartz David A, Langefeld Carl D, Fingerlin Tasha E

机构信息

Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA,

Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA,

出版信息

Hum Hered. 2021 Feb 10:1-13. doi: 10.1159/000513290.

Abstract

INTRODUCTION

Studies that examine the role of rare variants in both simple and complex disease are increasingly common. Though the usual approach of testing rare variants in aggregate sets is more powerful than testing individual variants, it is of interest to identify the variants that are plausible drivers of the association. We present a novel method for prioritization of rare variants after a significant aggregate test by quantifying the influence of the variant on the aggregate test of association.

METHODS

In addition to providing a measure used to rank variants, we use outlier detection methods to present the computationally efficient Rare Variant Influential Filtering Tool (RIFT) to identify a subset of variants that influence the disease association. We evaluated several outlier detection methods that vary based on the underlying variance measure: interquartile range (Tukey fences), median absolute deviation, and SD. We performed 1,000 simulations for 50 regions of size 3 kb and compared the true and false positive rates. We compared RIFT using the Inner Tukey to 2 existing methods: adaptive combination of p values (ADA) and a Bayesian hierarchical model (BeviMed). Finally, we applied this method to data from our targeted resequencing study in idiopathic pulmonary fibrosis (IPF).

RESULTS

All outlier detection methods observed higher sensitivity to detect uncommon variants (0.001 < minor allele frequency, MAF > 0.03) compared to very rare variants (MAF <0.001). For uncommon variants, RIFT had a lower median false positive rate compared to the ADA. ADA and RIFT had significantly higher true positive rates than that observed for BeviMed. When applied to 2 regions found previously associated with IPF including 100 rare variants, we identified 6 polymorphisms with the greatest evidence for influencing the association with IPF.

DISCUSSION

In summary, RIFT has a high true positive rate while maintaining a low false positive rate for identifying polymorphisms influencing rare variant association tests. This work provides an approach to obtain greater resolution of the rare variant signals within significant aggregate sets; this information can provide an objective measure to prioritize variants for follow-up experimental studies and insight into the biological pathways involved.

摘要

引言

研究罕见变异在单基因病和复杂疾病中的作用的研究日益普遍。尽管在集合中对罕见变异进行检测的常规方法比检测单个变异更具效力,但确定那些可能是关联驱动因素的变异仍很有意义。我们提出了一种新方法,通过量化变异对关联总体检验的影响,在显著的总体检验后对罕见变异进行优先级排序。

方法

除了提供一种用于对变异进行排名的度量外,我们还使用离群值检测方法,提出了计算效率高的罕见变异影响过滤工具(RIFT),以识别影响疾病关联的变异子集。我们评估了几种基于潜在方差度量而不同的离群值检测方法:四分位距(Tukey界限)、中位数绝对偏差和标准差。我们对50个大小为3 kb的区域进行了1000次模拟,并比较了真阳性率和假阳性率。我们将使用内Tukey方法的RIFT与2种现有方法进行了比较:p值的自适应组合(ADA)和贝叶斯层次模型(BeviMed)。最后,我们将此方法应用于我们针对特发性肺纤维化(IPF)的靶向重测序研究的数据。

结果

与极罕见变异(次要等位基因频率,MAF<0.001)相比,所有离群值检测方法在检测不常见变异(0.0010.03)时均表现出更高的灵敏度。对于不常见变异,与ADA相比,RIFT的中位假阳性率更低。ADA和RIFT的真阳性率显著高于BeviMed。当应用于先前发现与IPF相关的2个区域(包括100个罕见变异)时,我们确定了6个最有证据影响与IPF关联的多态性。

讨论

总之,RIFT在识别影响罕见变异关联检验的多态性时具有较高的真阳性率,同时保持较低的假阳性率。这项工作提供了一种方法,可在显著的总体集合中获得更高分辨率的罕见变异信号;这些信息可为后续实验研究中对变异进行优先级排序提供客观度量,并深入了解所涉及的生物学途径。

相似文献

4
Pulmonary fibrosis in the era of stratified medicine.分层医学时代的肺纤维化
Thorax. 2016 Dec;71(12):1154-1160. doi: 10.1136/thoraxjnl-2016-209172. Epub 2016 Oct 31.

本文引用的文献

8
TERT promoter mutations in thyroid cancer.甲状腺癌中的端粒酶逆转录酶(TERT)启动子突变
Endocr Relat Cancer. 2016 Mar;23(3):R143-55. doi: 10.1530/ERC-15-0533. Epub 2016 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验