Jones Pete R
Institute of Ophthalmology, University College London (UCL), London, EC1V 9EL, UK.
NIHR Moorfields Biomedical Research Centre, London, EC1V 2PD, UK.
Atten Percept Psychophys. 2019 Jul;81(5):1189-1196. doi: 10.3758/s13414-019-01726-3.
This paper considers how to identify statistical outliers in psychophysical datasets where the underlying sampling distributions are unknown. Eight methods are described, and each is evaluated using Monte Carlo simulations of a typical psychophysical experiment. The best method is shown to be one based on a measure of spread known as S. This is shown to be more sensitive than popular heuristics based on standard deviations from the mean, and more robust than non-parametric methods based on percentiles or interquartile range. MATLAB code for computing S is included.
本文探讨了如何在基础抽样分布未知的心理物理学数据集中识别统计异常值。文中描述了八种方法,并通过对典型心理物理学实验的蒙特卡罗模拟对每种方法进行了评估。结果表明,最佳方法是基于一种称为S的离散度度量。与基于均值标准差的常用启发式方法相比,该方法更具敏感性;与基于百分位数或四分位距的非参数方法相比,该方法更具稳健性。文中还包含了用于计算S的MATLAB代码。