Suppr超能文献

易于制备高强度高延展性块状超细晶钢的方法。

Facile route to bulk ultrafine-grain steels for high strength and ductility.

机构信息

Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK.

Beijing Advanced Innovation Centre for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China.

出版信息

Nature. 2021 Feb;590(7845):262-267. doi: 10.1038/s41586-021-03246-3. Epub 2021 Feb 10.

Abstract

Steels with sub-micrometre grain sizes usually possess high toughness and strength, which makes them promising for lightweighting technologies and energy-saving strategies. So far, the industrial fabrication of ultrafine-grained (UFG) alloys, which generally relies on the manipulation of diffusional phase transformation, has been limited to steels with austenite-to-ferrite transformation. Moreover, the limited work hardening and uniform elongation of these UFG steels hinder their widespread application. Here we report the facile mass production of UFG structures in a typical Fe-22Mn-0.6C twinning-induced plasticity steel by minor Cu alloying and manipulation of the recrystallization process through the intragranular nanoprecipitation (within 30 seconds) of a coherent disordered Cu-rich phase. The rapid and copious nanoprecipitation not only prevents the growth of the freshly recrystallized sub-micrometre grains but also enhances the thermal stability of the obtained UFG structure through the Zener pinning mechanism. Moreover, owing to their full coherency and disordered nature, the precipitates exhibit weak interactions with dislocations under loading. This approach enables the preparation of a fully recrystallized UFG structure with a grain size of 800 ± 400 nanometres without the introduction of detrimental lattice defects such as brittle particles and segregated boundaries. Compared with the steel to which no Cu was added, the yield strength of the UFG structure was doubled to around 710 megapascals, with a uniform ductility of 45 per cent and a tensile strength of around 2,000 megapascals. This grain-refinement concept should be extendable to other alloy systems, and the manufacturing processes can be readily applied to existing industrial production lines.

摘要

具有亚微米晶粒尺寸的钢通常具有高韧性和高强度,这使得它们在轻量化技术和节能策略方面具有广阔的应用前景。迄今为止,超细晶(UFG)合金的工业制造通常依赖于扩散相变的控制,仅限于具有奥氏体向铁素体转变的钢。此外,这些 UFG 钢的有限加工硬化和均匀延伸率限制了它们的广泛应用。在这里,我们通过在典型的 Fe-22Mn-0.6C 孪晶诱发塑性钢中进行少量铜合金化和通过晶内纳米沉淀(在 30 秒内)来控制再结晶过程,实现了 UFG 结构的简易批量生产。快速大量的纳米沉淀不仅防止了新再结晶的亚微米晶粒的生长,而且通过 Zener 钉扎机制增强了所获得的 UFG 结构的热稳定性。此外,由于它们的完全相干性和无序性,沉淀物在加载下与位错的相互作用较弱。这种方法能够制备完全再结晶的 UFG 结构,晶粒尺寸为 800±400 纳米,而不会引入脆性颗粒和偏析边界等有害的晶格缺陷。与未添加铜的钢相比,UFG 结构的屈服强度提高了一倍,达到约 710 兆帕,均匀延伸率为 45%,拉伸强度约为 2000 兆帕。这种晶粒细化的概念应该可以扩展到其他合金系统,制造工艺可以很容易地应用于现有的工业生产线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fab1/7888382/270b3b4efd26/nihms-1647274-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验